We present experimental and numerical results for the dynamic response of a connected Kagome artificial spin ice. We explicitly consider the effect of the vertex magnetization configuration on the ferromagnetic resonance (FMR) mode characteristics using micromagnetic simulations. We show that the bulk mode frequencies of each single-domain thin-film segment not only depend on the direction of the segment's easy-axes with respect to the applied magnetic field but also depend on the vertex magnetization configurations of nearby vertices. Therefore, the FMR modes can be controlled by altering the vertex magnetization texture. Moreover, we distinguish between vertex center modes (VCMs) and localized domain wall (LDW) modes. We show that the LDW mode evolves during the nucleation process of domain walls and that VCMs and LDW modes can be controlled using specific field protocols, which have important implications for future design of magnonic and spintronic devices.

1.
C.
Nisoli
,
R.
Moessner
, and
P.
Schiffer
, “
Colloquium: Artificial spin ice: Designing and imaging magnetic frustration
,”
Rev. Mod. Phys.
85
(
4
),
1473
(
2013
).
2.
S. H.
Skjærvø
,
C. H.
Marrows
,
R. L.
Stamps
, and
L. J.
Heyderman
, “
Advances in artificial spin ice
,”
Nat. Rev. Phys.
2
(
1
),
13
28
(
2020
).
3.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
, “
Magnonics
,”
J. Phys. D: Appl. Phys.
43
(
26
),
264001
(
2010
).
4.
H.
Arava
,
N.
Leo
,
D.
Schildknecht
,
J.
Cui
,
J.
Vijayakumar
,
P. M.
Derlet
,
A.
Kleibert
, and
L. J.
Heyderman
, “
Engineering relaxation pathways in building blocks of artificial spin ice for computation
,”
Phys. Rev. Appl.
11
(
5
),
054086
(
2019
).
5.
B.
Lenk
,
H.
Ulrichs
,
F.
Garbs
, and
M.
Münzenberg
, “
The building blocks of magnonics
,”
Phys. Rep.
507
(
4–5
),
107
136
(
2011
).
6.
S. A.
Daunheimer
,
O.
Petrova
,
O.
Tchernyshyov
, and
J.
Cumings
, “
Reducing disorder in artificial Kagome ice
,”
Phys. Rev. Lett.
107
(
16
),
167201
(
2011
).
7.
D. M.
Burn
,
M.
Chadha
, and
W. R.
Branford
, “
Angular-dependent magnetization reversal processes in artificial spin ice
,”
Phys. Rev. B
92
(
21
),
214425
(
2015
).
8.
V. S.
Bhat
,
F.
Heimbach
,
I.
Stasinopoulos
, and
D.
Grundler
, “
Angular-dependent magnetization dynamics of Kagome artificial spin ice incorporating topological defects
,”
Phys. Rev. B
96
(
1
),
014426
(
2017
).
9.
W.
Bang
,
F.
Montoncello
,
M. B.
Jungfleisch
,
A.
Hoffmann
,
L.
Giovannini
, and
J. B.
Ketterson
, “
Angular-dependent spin dynamics of a triad of permalloy macrospins
,”
Phys. Rev. B
99
(
1
),
014415
(
2019
).
10.
X.
Zhou
,
G. ‐L.
Chua
,
N.
Singh
, and
A. O.
Adeyeye
, “
Large area artificial spin ice and anti‐spin ice Ni80Fe20 structures: Static and dynamic behavior
,”
Adv. Funct. Mater.
26
(
9
),
1437
1444
(
2016
).
11.
W.
Bang
,
J.
Sturm
,
R.
Silvani
,
M. T.
Kaffash
,
A.
Hoffmann
,
J. B.
Ketterson
,
F.
Montoncello
, and
M. B.
Jungfleisch
, “
Influence of the vertex region on spin dynamics in artificial Kagome spin ice
,”
Phys. Rev. Appl.
14
(
1
),
014079
(
2020
).
12.
T.
Dion
,
D. M.
Arroo
,
K.
Yamanoi
,
T.
Kimura
,
J. C.
Gartside
,
L. F.
Cohen
,
H.
Kurebayashi
, and
W. R.
Branford
, “
Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification
,”
Phys. Rev. B
100
(
5
),
054433
(
2019
).
13.
B. L.
Le
,
J.
Park
,
J.
Sklenar
,
G. W.
Chern
,
C.
Nisoli
,
J. D.
Watts
,
M.
Manno
,
D. W.
Rench
,
N.
Samarth
,
C.
Leighton
, and
P.
Schiffer
, “
Understanding magnetotransport signatures in networks of connected permalloy nanowires
,”
Phys. Rev. B
95
(
6
),
060405
(
2017
).
14.
E.
Iacocca
,
S.
Gliga
,
R. L.
Stamps
, and
O.
Heinonen
, “
Reconfigurable wave band structure of an artificial square ice
,”
Phys. Rev. B
93
(
13
),
134420
(
2016
).
15.
M. B.
Jungfleisch
,
W.
Zhang
,
E.
Iacocca
,
J.
Sklenar
,
J.
Ding
,
W.
Jiang
,
S.
Zhang
 et al., “
Dynamic response of an artificial square spin ice
,”
Phys. Rev. B
93
(
10
),
100401
(
2016
).
16.
X. M.
Chen
,
B.
Farmer
,
J. S.
Woods
,
S.
Dhuey
,
W.
Hu
,
C.
Mazzoli
,
S. B.
Wilkins
 et al., “
Spontaneous magnetic superdomain wall fluctuations in an artificial antiferromagnet
,”
Phys. Rev. Lett.
123
(
19
),
197202
(
2019
).
17.
M. B.
Jungfleisch
,
J.
Sklenar
,
J.
Ding
,
J.
Park
,
J. E.
Pearson
,
V.
Novosad
,
P.
Schiffer
, and
A.
Hoffmann
, “
High-frequency dynamics modulated by collective magnetization reversal in artificial spin ice
,”
Phys. Rev. Appl.
8
(
6
),
064026
(
2017
).
18.
V. S.
Bhat
,
J.
Sklenar
,
B.
Farmer
,
J.
Woods
,
J. B.
Ketterson
,
J. T.
Hastings
, and
L. E.
De Long
, “
Ferromagnetic resonance study of eightfold artificial ferromagnetic quasicrystals
,”
J. Appl. Phys.
115
(
17
),
17C502
(
2014
).
19.
A.
Frotanpour
,
J.
Woods
,
B.
Farmer
,
A. P.
Kaphle
,
L. E.
De Long
,
L.
Giovannini
, and
F.
Montoncello
, “
Magnetization dynamic in Fibonacci distorted Kagome artificial spin ice
,”
Phys. Rev. B
102
(
22
),
224435
(
2020
).
20.
B.
Farmer
,
V. S.
Bhat
,
A.
Balk
,
E.
Teipel
,
N.
Smith
,
J.
Unguris
,
D. J.
Keavney
,
J. T.
Hastings
, and
L. E.
De Long
, “
Direct imaging of coexisting ordered and frustrated sublattices in artificial ferromagnetic quasicrystals
,”
Phys. Rev. B
93
(
13
),
134428
(
2016
).
21.
G. S.
Abo
,
Y.-K.
Hong
,
B.-C.
Choi
,
M. J.
Donahue
,
S.
Bae
,
J.
Jalli
,
J.
Park
,
J.
Lee
,
M.-H.
Park
, and
S.-H.
Gee
, “
Micromagnetic computer simulated scaling effect of s-shaped permalloy nano-element on operating fields for and or or logic
,”
IEEE Trans. Magn.
48
(
5
),
1851
1855
(
2012
).
22.
D.-X.
Chen
,
E.
Pardo
, and
A.
Sanchez
, “
Demagnetizing factors for rectangular prisms
,”
IEEE Trans. Magn.
41
(
6
),
2077
2088
(
2005
).
You do not currently have access to this content.