Chirality control of the spin structure in monoaxial helimagnets by using charge current is theoretically investigated. The classical J1J2 Heisenberg model has two degenerate helical states that are characterized by the chirality. In a recent experiment, it has been shown that the chirality of the spin structure can be controlled by applying a charge current during the field-decreasing process [Jiang et al., Nat. Commun. 11, 1601 (2020)]. We reproduced this experiment by numerical calculations based on the Landau–Lifshitz–Gilbert equation with the spin-transfer torque. We show that the damping torque and spin-transfer torque are responsible for the controllability. In addition, we theoretically propose more convenient forms of chirality control: instantaneous switching of chirality and zero-field control by using a ferromagnet junction. Such improved controllability may pave the way to spintronics based on the chirality degree of freedom.

1.
N.
Nagaosa
and
Y.
Tokura
,
Nat. Nanotechnol.
8
,
899
(
2013
).
2.
X. Z.
Yu
,
Y.
Onose
,
N.
Kanazawa
,
J. H.
Park
,
J. H.
Han
,
Y.
Matui
,
N.
Nagaosa
, and
Y.
Tokura
,
Nature
465
,
901
(
2010
).
3.
Y.
Togawa
,
Y.
Kousaka
,
K.
Inoue
, and
J.
Kishine
,
J. Phys. Soc. Jpn.
85
,
112001
(
2016
).
4.
O.
Eriksson
,
A.
Bergman
,
L.
Bergqvist
, and
J.
Hellsvik
,
Atomistic Spin Dynamics: Foundations and Applications
(
Oxford University Press
,
2017
).
5.
M.
Krawczyk
and
D.
Grundler
,
J. Phys.: Condens. Matter
26
,
123202
(
2014
).
6.
I. E.
Dzyaloshinskii
,
J. Phys. Chem. Solids
4
,
241
(
1958
).
8.
A.
Yoshimori
,
J. Phys. Soc. Jpn.
14
,
807
(
1959
).
9.
J. C.
Slonczewski
,
J. Magn. Magn. Mater.
159
,
L1
(
1996
).
10.
L.
Berger
,
J. Appl. Phys.
49
,
2156
(
1978
);
L.
Berger
,
J. Appl. Phys.
50
,
2137
(
1979
).
11.
N.
Jiang
,
Y.
Nii
,
H.
Arisawa
,
E.
Saitoh
, and
Y.
Onose
,
Nat. Commun.
11
,
1601
(
2020
).
12.
S.
Okumura
,
H.
Ishizuka
,
Y.
Kato
,
J. I.
Ohe
, and
Y.
Motome
,
Appl. Phys. Lett.
115
,
012401
(
2019
).
13.
H.
Ishizuka
and
N.
Nagaosa
,
Nat. Commun.
11
,
2986
(
2020
).
14.
T.
Okubo
,
S.
Chung
, and
H.
Kawamura
,
Phys. Rev. Lett.
108
,
017206
(
2012
).
15.
16.
S.
Zhang
and
Z.
Li
,
Phys. Rev. Lett.
93
,
127204
(
2004
).
17.
Z.
Li
and
S.
Zhang
,
Phys. Rev. B
70
,
024417
(
2004
).
18.
A.
Brataas
,
A. D.
Kent
, and
H.
Ohno
,
Nat. Mater.
11
,
372
(
2012
).
19.
S.
Yano
,
J.
Akimitsu
,
S.
Itoh
,
T.
Yokoo
,
S.
Satoh
,
D.
Kawana
, and
E.
Yasuo
,
J. Phys.: Conf. Ser.
391
,
012113
(
2012
).
20.
E. E.
Huber
, Jr.
and
D. H.
Ridgley
,
Phys. Rev.
135
,
A1033
(
1964
).
21.
G. P.
Felcher
,
J. Appl. Phys.
37
,
1056
(
1966
).
22.
G.
Tatara
and
H.
Kohno
,
Phys. Rev. Lett.
92
,
086601
(
2004
).
23.
G. L. J. A.
Rikken
and
E.
Raupach
,
Nature
390
,
493
(
1997
).
24.
G. L. J. A.
Rikken
,
J.
Folling
, and
P.
Wyder
,
Phys. Rev. Lett.
87
,
236602
(
2001
).
25.
A.
Inui
,
R.
Aoki
,
Y.
Nishiue
,
K.
Shiota
,
Y.
Kousaka
,
H.
Shishido
,
D.
Hirobe
,
M.
Suda
,
J. I.
Ohe
,
J. I.
Kishine
,
H. M.
Yamamoto
, and
Y.
Togawa
,
Phys. Rev. Lett.
124
,
166602
(
2020
).
26.
H.
Watanabe
,
K.
Hoshi
, and
J. I.
Ohe
,
Phys. Rev. B
94
,
125143
(
2016
).
You do not currently have access to this content.