We present a beam splitter for guided electrons using an electrostatic guiding potential created above the surface of two opposing planar microstructured printed circuit boards. The electric fields acting on the electrons result in a ponderomotive potential. We show that we can smoothly transition the ponderomotive potential from a single-well into a double-well, which leads to the splitting of the electron beam. Efficient beam splitting is observed over a large range of kinetic energies starting at 200 eV up to 1700 eV. We discuss future work needed to reach adiabatic beam splitting for quantum state-selective electron optics. This will pave the way for an electron interferometer on a chip and, therefore, result in until now not possible elements for electron optics and microscopy.

1.
L.-V.
de Broglie
,
Ann. Phys.
10
,
22
128
(
1925
).
2.
G. P.
Thomson
and
A.
Reid
,
Nature
119
,
890
(
1927
).
3.
C.
Davisson
and
L.
Germer
,
Proc. Natl. Acad. Sci. U. S. A.
14
,
317
(
1928
).
4.
H.
Rauch
and
S. A.
Werner
,
Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement
(
Oxford University Press
,
2015
), Vol.
12
.
5.
I.
Bloch
,
J.
Dalibard
, and
W.
Zwerger
,
Rev. Mod. Phys.
80
,
885
(
2008
).
6.
T.
Juffmann
,
A.
Milic
,
M.
Müllneritsch
,
P.
Asenbaum
,
A.
Tsukernik
,
J.
Tüxen
,
M.
Mayor
,
O.
Cheshnovsky
, and
M.
Arndt
,
Nat. Nanotechnol.
7
,
297
(
2012
).
7.
G.
Möllenstedt
and
H.
Düker
,
Naturwissenschaften
42
,
41
(
1955
).
8.
D.
Gabor
,
Nature
161
,
777
(
1948
).
9.
A.
Tonomura
,
Electron Holography
(
Springer
,
1999
), pp.
29
49
.
10.
F.
Hasselbach
,
Rep. Prog. Phys.
73
,
016101
(
2010
).
11.
M.
Born
,
E.
Wolf
,
A. B.
Bhatia
,
P. C.
Clemmow
,
D.
Gabor
,
A. R.
Stokes
,
A. M.
Taylor
,
P. A.
Wayman
, and
W. L.
Wilcock
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, 7th ed. (
Cambridge University Press
,
1999
).
12.
W. P.
Putnam
and
M. F.
Yanik
,
Phys. Rev. A
80
,
040902
(
2009
).
13.
S.
Thomas
,
C.
Kohstall
,
P.
Kruit
, and
P.
Hommelhoff
,
Phys. Rev. A
90
,
053840
(
2014
).
14.
P.
Kruit
,
R. G.
Hobbs
,
C.-S.
Kim
,
Y.
Yang
,
V. R.
Manfrinato
,
J.
Hammer
,
S.
Thomas
,
P.
Weber
,
B.
Klopfer
,
C.
Kohstall
 et al,
Ultramicroscopy
164
,
31
(
2016
).
15.
N. H.
Dekker
,
C. S.
Lee
,
V.
Lorent
,
J. H.
Thywissen
,
S. P.
Smith
,
M.
Drndić
,
R. M.
Westervelt
, and
M.
Prentiss
,
Phys. Rev. Lett.
84
,
1124
(
2000
).
16.
W.
Hänsel
,
J.
Reichel
,
P.
Hommelhoff
, and
T. W.
Hänsch
,
Phys. Rev. A
64
,
063607
(
2001
).
17.
T.
Schumm
,
S.
Hofferberth
,
L. M.
Andersson
,
S.
Wildermuth
,
S.
Groth
,
I.
Bar-Joseph
,
J.
Schmiedmayer
, and
P.
Krüger
,
Nat. Phys.
1
,
57
(
2005
).
18.
M.
Ammar
,
M.
Dupont-Nivet
,
L.
Huet
,
J.-P.
Pocholle
,
P.
Rosenbusch
,
I.
Bouchoule
,
C. I.
Westbrook
,
J.
Estève
,
J.
Reichel
,
C.
Guerlin
, and
S.
Schwartz
,
Phys. Rev. A
91
,
053623
(
2015
).
19.
J.
Hammer
,
S.
Thomas
,
P.
Weber
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
114
,
254801
(
2015
).
20.
J.
Hoffrogge
,
R.
Fröhlich
,
M. A.
Kasevich
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
106
,
193001
(
2011
).
21.
J.
Hoffrogge
and
P.
Hommelhoff
,
New J. Phys.
13
,
095012
(
2011
).
22.
J.
Hammer
,
J.
Hoffrogge
,
S.
Heinrich
, and
P.
Hommelhoff
,
Phys. Rev. Appl.
2
,
044015
(
2014
).
23.
R.
Zimmermann
,
P.
Weber
,
M.
Seidling
, and
P.
Hommelhoff
,
Appl. Phys. Lett.
115
,
104103
(
2019
).
24.
W.
Paul
,
Rev. Mod. Phys.
62
,
531
(
1990
).
25.
J. H.
Wesenberg
,
Phys. Rev. A
78
,
063410
(
2008
).
26.
F.
Major
,
V.
Gheorghe
, and
G.
Werth
,
Charged Particle Traps
(
Springer
,
Heidelberg
,
2005
).
27.
H.
Dehmelt
,
Advances in Atomic and Molecular Physics
(
Elsevier
,
1968
), Vol.
3
, pp.
53
72
.
28.
R.
Zimmermann
,
M.
Seidling
, and
P.
Hommelhoff
, “
Charged particle guiding and beam splitting with auto-ponderomotive potentials on a chip
,”
Nat. Commun.
(in press,
2021
).
29.
E. D.
Courant
,
M. S.
Livingston
,
H. S.
Snyder
, and
J. P.
Blewett
,
Phys. Rev.
91
,
202
(
1953
).
30.
S.
Guan
and
A. G.
Marshall
,
J. Am. Soc. Mass Spectrom.
7
,
101
(
1996
).
31.
M.
Allers
,
F.
Schlottmann
,
M.
Eckermann
, and
S.
Zimmermann
,
Int. J. Mass Spectrom.
443
,
32
(
2019
).
32.
H.
Wollnik
,
Optics of Charged Particles
(
Elsevier Science
,
2012
).
33.
D.
Gerlich
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc
.,
2007
), Vol.
LXXXII
, pp.
1
176
.
34.
R. J.
Cook
,
D. G.
Shankland
, and
A. L.
Wells
,
Phys. Rev. A
31
,
564
(
1985
).
35.
D. A.
Hite
,
Y.
Colombe
,
A. C.
Wilson
,
K. R.
Brown
,
U.
Warring
,
R.
Jördens
,
J. D.
Jost
,
K. S.
McKay
,
D. P.
Pappas
,
D.
Leibfried
, and
D. J.
Wineland
,
Phys. Rev. Lett.
109
,
103001
(
2012
).
36.
P. J.
Beierle
,
L.
Zhang
, and
H.
Batelaan
,
New J. Phys.
20
,
113030
(
2018
).
37.
N.
Kerker
,
R.
Röpke
,
L. M.
Steinert
,
A.
Pooch
, and
A.
Stibor
,
New J. Phys.
22
,
063039
(
2020
).

Supplementary Material

You do not currently have access to this content.