Energy conservation and battery life extension are key challenges for the next-generation hybrid electric vehicles. In particular, the temperature and electric currents in a storage battery need to be monitored simultaneously with ∼1 kHz signal bandwidth for optimum battery usage. Here we introduce a centimeter-scale portable quantum sensor head, consisting of a diamond substrate hosting an ensemble of nitrogen-vacancy (NV) color centers with a density of ∼3 × 1017 cm−3. One diamond surface is attached to a multi-mode fiber for simultaneous optical excitation and readout of the NV centers, while the other diamond surface is attached to a coplanar microwave guide for NV spin ground-state mixing. Signal bandwidth of 1 kHz was realized through time-domain multiplexing of the two-tone microwave frequency modulation at 20 kHz. Two microwave frequencies were locked to the two resonance points that were determined from the optically detected magnetic resonance spectrum. From the mean and the difference of the deviation from the two locked frequencies, the temperature and magnetic field were obtained simultaneously and independently, with sensitivities of 3.5 nT/Hz1/2 and 1.3 mK/Hz1/2, respectively. We also showed that our sensor reached a minimum detectable magnetic field of 5 pT by accumulating signals for over 10 000 s.

1.
J. M.
Taylor
,
P.
Cappellaro
,
L.
Childress
,
L.
Jiang
,
D.
Budker
,
P. R.
Hemmer
,
A.
Yacoby
,
R.
Walsworth
, and
M. D.
Lukin
, “
High-sensitivity diamond magnetometer with nanoscale resolution
,”
Nat. Phys.
4
,
810
(
2008
).
2.
G.
Balasubramanian
,
I.
Chan
,
R.
Kolesov
,
M.
Al-Hmoud
,
J.
Tisler
,
C.
Shin
,
C.
Kim
,
A.
Wojcik
,
P.
Hemmer
,
A.
Krueger
,
T.
Hanke
,
A.
Leitenstorfer
,
R.
Bratschitsch
,
F.
Jelezko
, and
J.
Wrachtrup
, “
Nanoscale imaging magnetometry with diamond spins under ambient conditions
,”
Nature
455
,
648
(
2008
).
3.
J.
Maze
,
P.
Stanwix
,
J.
Hodges
,
S.
Hong
,
J.
Taylor
,
P.
Cappellaro
,
L.
Jiang
,
M.
Dutt
,
E.
Togan
,
A.
Zibrov
,
A.
Yacoby
,
R.
Walsworth
, and
M.
Lukin
, “
Nanoscale magnetic sensing with an individual electronic spin in diamond
,”
Nature
455
,
644
(
2008
).
4.
J.
Hodges
,
N.
Yao
,
D.
Maclaurin
,
C.
Rastogi
,
M.
Lukin
, and
D.
Englund
, “
Timekeeping with electron spin states in diamond
,”
Phys. Rev. A
87
,
032118
(
2013
).
5.
G.
Kucsko
,
P.
Maurer
,
N.
Yao
,
M.
Kubo
,
H.
Noh
,
P.
Lo
,
H.
Park
, and
M. D.
Lukin
, “
Nanometre-scale thermometry in a living cell
,”
Nature
500
,
54
58
(
2013
).
6.
D.
Toyli
,
C.
de las Casas
,
D.
Christle
,
V.
Dobrovitski
, and
D.
Awschalom
, “
Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond
,”
Proc. Natl. Acad. Sci.
110
,
8417
(
2013
).
7.
J.
Barry
,
M.
Turner
,
J.
Schloss
,
D.
Glenn
,
Y.
Song
,
M.
Lukin
,
H.
Park
, and
R.
Walsworth
, “
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond
,”
Proc. Natl. Acad. Sci.
113
(
49
),
14133
14138
(
2016
).
8.
J.
Webb
,
J.
Clement
,
L.
Troise
,
S.
Ahmadi
,
G.
Johansen
,
A.
Huck
, and
U.
Andersen
, “
Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer
,”
Appl. Phys. Lett.
114
,
231103
(
2019
).
9.
F.
Stürner
,
A.
Brenneis
,
J.
Kassel
,
U.
Wostradowski
,
R.
Rölver
,
T.
Fuchs
,
K.
Nakamura
,
H.
Sumiya
,
S.
Onoda
,
J.
Isoya
, and
F.
Jelezko
, “
Compact integrated magnetometer based on nitrogen-vacancy centres in diamond
,”
Diamond Relat. Mater.
93
,
59
65
(
2019
).
10.
D.
Zheng
,
Z.
Ma
,
W.
Guo
,
L.
Niu
,
J.
Wang
,
X.
Chai
,
Y.
Li
,
Y.
Sugawara
,
C.
Yu
,
Y.
Shi
,
X.
Zhang
,
J.
Tang
,
H.
Guo
, and
J.
Liu
, “
A hand-held magnetometer based on an ensemble of nitrogen-vacancy centers in diamond
,”
J. Phys. D
53
,
155004
(
2020
).
11.
N.
Nusran
,
M.
Momeen
, and
M.
Gurudev Dutt
, “
High-dynamic-range magnetometry with a single electronic spin in diamond
,”
Nat. Nanotechnol.
7
,
109
(
2012
).
12.
I.
Fescenko
,
A.
Jarmola
,
I.
Savukov
,
P.
Kehayias
,
J.
Smits
,
J.
Damron
,
N.
Ristoff
,
N.
Mosavian
, and
V.
Acosta
, “
Diamond magnetometer enhanced by ferrite flux concentrators
,” arXiv:1911.05070 (
2020
).
13.
H.
Clevenson
,
M.
Trusheim
,
C.
Teale
,
T.
Schröder
,
D.
Braje
, and
D.
Englund
, “
Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide
,”
Nat. Phys.
11
,
393
397
(
2015
).
14.
D.
Kim
,
M.
Ibrahim
,
C.
Foy
,
M.
Trusheim
,
R.
Han
, and
D.
Englund
, “
CMOS-integrated diamond nitrogen-vacancy quantum sensor
,”
Nat. Electron.
2
,
284
289
(
2019
).
15.
T.
Sato
,
T.
Kitaizumi
,
K.
Saichi
,
A.
Kuwahata
,
R.
Igarashi
,
T.
Ohshima
,
Y.
Masuyama
,
T.
Iwasaki
,
M.
Hatano
,
F.
Jelezko
,
M.
Kusakabe
,
M.
Sekino
, and
T.
Yatsui
, “
Improving magnetic sensitivity in magnetometer with nitrogen-vacancy center in a bulk diamond using grating coupler
,” in
Proceedings of the 2nd International Forum on Quantum Metrology and Sensing (IFQMS)
, December 17, Kyoto, Japan, B-7 (
2019
).
16.
Y.
Masuyama
,
K.
Mizuno
,
H.
Ozawa
,
H.
Ishiwata
,
Y.
Hatano
,
T.
Ohshima
,
T.
Iwasaki
, and
M.
Hatano
, “
Extending coherence time of macro-scale diamond magnetometer by dynamical decoupling with coplanar waveguide resonator
,”
Rev. Sci. Instrum.
89
(
12
),
125007
(
2018
).
17.
J.
Schloss
,
J.
Barry
,
M.
Turner
, and
R.
Walsworth
, “
Simultaneous broadband vector magnetometry using solid-state spins
,”
Phys. Rev. Appl.
10
,
034044
(
2018
).
18.
V.
Acosta
,
E.
Bauch
,
M.
Ledbetter
,
A.
Waxman
,
L.
Bouchard
, and
D.
Budker
, “
Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond
,”
Phys. Rev. Lett.
104
,
070801
(
2010
).
19.
X.
Chen
,
C.
Dong
,
F.
Sun
,
C.
Zou
,
J.
Cui
,
Z.
Han
, and
G.
Guo
, “
Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond
,”
Appl. Phys. Lett.
99
,
161903
(
2011
).
20.
J.
Wang
,
F.
Feng
,
J.
Zhang
,
J.
Chen
,
Z.
Zheng
,
L.
Guo
,
W.
Zhang
,
X.
Song
,
G.
Guo
,
L.
Fan
,
C.
Zou
,
L.
Lou
,
W.
Zhu
, and
G.
Wang
, “
High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond
,” arXiv:1410.6893v1 (
2015
).
21.
K.
Hayashi
,
Y.
Matsuzaki
,
T.
Taniguchi
,
T.
Shimooka
,
I.
Nakamura
,
S.
Onoda
,
T.
Ohshima
,
H.
Morishita
,
M.
Fujiwara
,
S.
Saito
, and
N.
Mizuochi
, “
Optimization of temperature sensitivity using the optically detected magnetic resonance spectrum of a nitrogen-vacancy center ensemble
,” arXiv:1803.00341 (
2018
).
22.
T.
Wee
,
Y.
Tzeng
,
C.
Han
,
H.
Chang
,
W.
Fann
,
J.
Hsu
,
K.
Chen
, and
Y.
Yu
, “
Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond
,”
J. Phys. Chem. A
111
(
38
),
9379
(
2007
).
23.
R.
Patel
,
L.
Zhou
,
A.
Frangeskou
,
G.
Stimpson
,
B.
Breeze
,
A.
Nikitin
,
M.
Dale
,
E.
Nichols
,
W.
Thornley
,
B.
Green
,
M.
Newton
,
A.
Edmonds
,
M.
Markham
,
D.
Twitchen
, and
G.
Morley
, “
Sub-nanotesla magnetometry with a fibre-coupled diamond sensor
,” arXiv:2002.08255 (
2020
).
You do not currently have access to this content.