Thermoelectric (TE) properties of monolayered α-In2Se3 are investigated using the first-principles calculations based on the density functional theory and Boltzmann transport theory. The results show that monolayered α-In2Se3 is a great candidate for high-performance thermoelectric materials with the power factor PF and the figure of merit ZT as high as 0.02 W/mK2 and 2.18 at room temperature, respectively. We attribute such great TE performance to the large electrical conductivity and low lattice thermal conductivity, which originate from unique band structures of group III chalcogenides and anharmonic scattering. Furthermore, we prove that the quantum confinement effect can realize up to an order of magnitude enhancement in the PF. Our findings may open up new possibilities for two-dimensional thermoelectric materials in practical applications.

1.
S. K.
Yee
,
S.
LeBlanc
,
K. E.
Goodson
, and
C.
Dames
,
Energy Environ. Sci.
6
,
2561
2571
(
2013
).
2.
L.
Hicks
and
M. S.
Dresselhaus
, “
Thermoelectric figure of merit of a one-dimensional conductor
,”
Phys. Rev. B
47
,
16631
(
1993
).
3.
L.
Hicks
and
M. S.
Dresselhaus
, “
Effect of quantum-well structures on the thermoelectric figure of merit
,”
Phys. Rev. B
47
,
12727
(
1993
).
4.
N. T.
Hung
,
A. R.
Nugraha
, and
R.
Saito
, “
Two-dimensional inse as a potential thermoelectric material
,”
Appl. Phys. Lett.
111
,
092107
(
2017
).
5.
D.
Wickramaratne
,
F.
Zahid
, and
R. K.
Lake
, “
Electronic and thermoelectric properties of van der waals materials with ring-shaped valence bands
,”
J. Appl. Phys.
118
,
075101
(
2015
).
6.
Q.
Wang
,
L.
Han
,
L.
Wu
,
T.
Zhang
,
S.
Li
, and
P.
Lu
, “
Strain effect on thermoelectric performance of inse monolayer
,”
Nanoscale Res. Lett.
14
,
1
9
(
2019
).
7.
B.
Dong
,
Z.
Wang
,
N. T.
Hung
,
A. R.
Oganov
,
T.
Yang
,
R.
Saito
, and
Z.
Zhang
, “
New two-dimensional phase of tin chalcogenides: Candidates for high-performance thermoelectric materials
,”
Phys. Rev. Mater.
3
,
013405
(
2019
).
8.
Y.
Zhou
and
L.-D.
Zhao
, “
Promising thermoelectric bulk materials with 2D structures
,”
Adv. Mater.
29
,
1702676
(
2017
).
9.
Y.
Zhou
,
D.
Wu
,
Y.
Zhu
,
Y.
Cho
,
Q.
He
,
X.
Yang
,
K.
Herrera
,
Z.
Chu
,
Y.
Han
,
M. C.
Downer
 et al, “
Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes
,”
Nano letters
17
,
5508
5513
(
2017
).
10.
F.
Xue
,
W.
Hu
,
K.-C.
Lee
,
L.-S.
Lu
,
J.
Zhang
,
H.-L.
Tang
,
A.
Han
,
W.-T.
Hsu
,
S.
Tu
,
W.-H.
Chang
 et al, “
Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit
,”
Adv. Funct. Mater.
28
,
1803738
(
2018
).
11.
C.
Cui
,
W.-J.
Hu
,
X.
Yan
,
C.
Addiego
,
W.
Gao
,
Y.
Wang
,
Z.
Wang
,
L.
Li
,
Y.
Cheng
,
P.
Li
 et al, “
Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3
,”
Nano Lett.
18
,
1253
1258
(
2018
).
12.
J.
Zhou
,
Q.
Zeng
,
D.
Lv
,
L.
Sun
,
L.
Niu
,
W.
Fu
,
F.
Liu
,
Z.
Shen
,
C.
Jin
, and
Z.
Liu
, “
Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition
,”
Nano Lett.
15
,
6400
6405
(
2015
).
13.
S. M.
Poh
,
S. J. R.
Tan
,
H.
Wang
,
P.
Song
,
I. H.
Abidi
,
X.
Zhao
,
J.
Dan
,
J.
Chen
,
Z.
Luo
,
S. J.
Pennycook
 et al, “
Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction
,”
Nano Lett.
18
,
6340
6346
(
2018
).
14.
M.
Ku?pers
,
P. M.
Konze
,
A.
Meledin
,
J.
Mayer
,
U.
Englert
,
M.
Wuttig
, and
R.
Dronskowski
, “
Controlled crystal growth of indium selenide, In2Se3, and the crystal structures of α-In2Se3
,”
Inorg. Chem.
57
,
11775
11781
(
2018
).
15.
R. B.
Jacobs-Gedrim
,
M.
Shanmugam
,
N.
Jain
,
C. A.
Durcan
,
M. T.
Murphy
,
T. M.
Murray
,
R. J.
Matyi
,
R. L.
Moore
, and
B.
Yu
, “
Extraordinary photoresponse in two-dimensional in2se3 nanosheets
,”
ACS Nano
8
,
514
521
(
2014
).
16.
M.
Si
,
A. K.
Saha
,
S.
Gao
,
G.
Qiu
,
J.
Qin
,
Y.
Duan
,
J.
Jian
,
C.
Niu
,
H.
Wang
,
W.
Wu
 et al, “
A ferroelectric semiconductor field-effect transistor
,”
Nat. Electron.
2
,
580
586
(
2019
).
17.
W.
Feng
,
W.
Zheng
,
F.
Gao
,
X.
Chen
,
G.
Liu
,
T.
Hasan
,
W.
Cao
, and
P.
Hu
, “
Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3
,”
Chem. Mater.
28
,
4278
4283
(
2016
).
18.
R.
Fei
,
W.
Kang
, and
L.
Yang
, “
Ferroelectricity and phase transitions in monolayer group-iv monochalcogenides
,”
Phys. Rev. Lett.
117
,
097601
(
2016
).
19.
L.-D.
Zhao
,
S.-H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
Ultralow thermal conductivity and high thermoelectric figure of merit in snse crystals
,”
Nature
508
,
373
377
(
2014
).
20.
V.
Zolyomi
,
N.
Drummond
, and
V.
Fal'Ko
, “
Band structure and optical transitions in atomic layers of hexagonal gallium chalcogenides
,”
Phys. Rev. B
87
,
195403
(
2013
).
21.
V.
Zólyomi
,
N.
Drummond
, and
V.
Fal'Ko
, “
Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations
,”
Phys. Rev. B
89
,
205416
(
2014
).
22.
G. K.
Madsen
and
D. J.
Singh
, “
Boltztrap. a code for calculating band-structure dependent quantities
,”
Comput. Phys. Commun.
175
,
67
71
(
2006
).
23.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
Shengbte: A solver of the boltzmann transport equation for phonons
,”
Comput. Phys. Commun.
185
,
1747
1758
(
2014
).
24.
W.
Walukiewicz
,
H.
Ruda
,
J.
Lagowski
, and
H.
Gatos
, “
Electron mobility in modulation-doped heterostructures
,”
Phys. Rev. B
30
,
4571
(
1984
).
25.
S.
Bruzzone
and
G.
Fiori
, “
Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride
,”
Appl. Phys. Lett.
99
,
222108
(
2011
).
26.
J.
Qiao
,
X.
Kong
,
Z.-X.
Hu
,
F.
Yang
, and
W.
Ji
, “
High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
,”
Nat. Commun.
5
,
1
7
(
2014
).
27.
H.
Miyazawa
and
S.
Sugaike
, “
Phase transition of In2Se3
,”
J. Phys. Soc. Jpn.
12
,
312
312
(
1957
).
28.
K.
Osamura
,
Y.
Murakami
, and
Y.
Tomiie
, “
Crystal structures of α-and β-indium selenide, in2se3
,”
J. Phys. Soc. Jpn.
21
,
1848
1848
(
1966
).
29.
S.
Popović
,
A.
Tonejc
,
B.
Gržeta-Plenković
,
B.
Čelustka
, and
R.
Trojko
, “
Revised and new crystal data for indium selenides
,”
J. Appl. Crystallogr.
12
,
416
420
(
1979
).
30.
C. D.
Groot
and
J.
Moodera
, “
Growth and characterization of a novel In2Se3 structure
,”
J. Appl. Phys.
89
,
4336
4340
(
2001
).
31.
W.
Ding
,
J.
Zhu
,
Z.
Wang
,
Y.
Gao
,
D.
Xiao
,
Y.
Gu
,
Z.
Zhang
, and
W.
Zhu
, “
Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
,”
Nat. Commun.
8
,
1
8
(
2017
).
32.
L.
Debbichi
,
O.
Eriksson
, and
S.
Lebègue
, “
Two-dimensional indium selenides compounds: An ab initio study
,”
J. Phys. Chem. Lett.
6
,
3098
3103
(
2015
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
35.
M.
Cutler
,
J.
Leavy
, and
R.
Fitzpatrick
, “
Electronic transport in semimetallic cerium sulfide
,”
Phys. Rev.
133
,
A1143
(
1964
).
36.
T. M.
Tritt
, “
Thermoelectric phenomena, materials, and applications
,”
Annu. Rev. Mater. Res.
41
,
433
448
(
2011
).
37.
K.
Kuroki
and
R.
Arita
, “
‘Pudding mold’ band drives large thermopower in NaxCoO2
,”
J. Phys. Soc. Jpn.
76
,
083707
083707
(
2007
).
38.
W.
Kim
, “
Strategies for engineering phonon transport in thermoelectrics
,”
J. Mater. Chem. C
3
,
10336
10348
(
2015
).
39.
K. N.
Kudin
,
G. E.
Scuseria
, and
B. I.
Yakobson
, “
C2F, BN, and C nanoshell elasticity from ab initio computations
,”
Phys. Rev. B
64
,
235406
(
2001
).
40.
R. C.
Cooper
,
C.
Lee
,
C. A.
Marianetti
,
X.
Wei
,
J.
Hone
, and
J. W.
Kysar
, “
Nonlinear elastic behavior of two-dimensional molybdenum disulfide
,”
Phys. Rev. B
87
,
035423
(
2013
).
41.
T.
Lorenz
,
D.
Teich
,
J.-O.
Joswig
, and
G.
Seifert
, “
Theoretical study of the mechanical behavior of individual TiS2 and MoS2 nanotubes
,”
J. Phys. Chem. C
116
,
11714
11721
(
2012
).
42.
A.
Togo
and
I.
Tanaka
, “
First principles phonon calculations in materials science
,”
Scr. Mater.
108
,
1
5
(
2015
).
43.
D.
Morelli
,
V.
Jovovic
, and
J.
Heremans
, “
Intrinsically minimal thermal conductivity in cubic I-V-VI 2 semiconductors
,”
Phys. Rev. Lett.
101
,
035901
(
2008
).
44.
Y.
Zhang
,
E.
Skoug
,
J.
Cain
,
V.
Ozoliņš
,
D.
Morelli
, and
C.
Wolverton
, “
First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors
,”
Phys. Rev. B
85
,
054306
(
2012
).
45.
W. G.
Zeier
,
A.
Zevalkink
,
Z. M.
Gibbs
,
G.
Hautier
,
M. G.
Kanatzidis
, and
G. J.
Snyder
, “
Thinking like a chemist: Intuition in thermoelectric materials
,”
Angew. Chem., Int. Ed.
55
,
6826
6841
(
2016
).
46.
Z.
Wang
,
T.
Zhang
,
M.
Ding
,
B.
Dong
,
Y.
Li
,
M.
Chen
,
X.
Li
,
J.
Huang
,
H.
Wang
,
X.
Zhao
 et al, “
Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor
,”
Nat. Nanotechnol.
13
,
554
559
(
2018
).
47.
H.
Yuan
,
H.
Shimotani
,
J.
Ye
,
S.
Yoon
,
H.
Aliah
,
A.
Tsukazaki
,
M.
Kawasaki
, and
Y.
Iwasa
, “
Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors
,”
J. Am. Chem. Soc.
132
,
18402
18407
(
2010
).
48.
N. T.
Hung
,
E. H.
Hasdeo
,
A. R.
Nugraha
,
M. S.
Dresselhaus
, and
R.
Saito
, “
Quantum effects in the thermoelectric power factor of low-dimensional semiconductors
,”
Phys. Rev. Lett.
117
,
036602
(
2016
).
49.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
50.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
You do not currently have access to this content.