Recently, the crystallographic phases of HfO2 and ZrO2, including the polar phases, have been well characterized, and also the total and free energies have been calculated. However, less is known about the structure and energy of the crystalline coherent interface—also called the interphase. The formation of domain and phase boundaries is determined by interphase energies and properties, and their knowledge is indispensable to better understand the phase formation and phase stability. We have calculated the interphase energy for HfO2 and ZrO2 at T = 0 K for the relevant phase pairs with two methods, which are in good agreement. The method is applicable to any crystalline material with metastable phases. The values range in a few 100 mJ/m2, which is consistent with previous estimates from room temperature but too large for estimates from high-temperature processes. We propose a temperature dependence of interphase energy such that it becomes small close to the phase transition.

1.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
, “
Ferroelectricity in Hafnium oxide thin films
,”
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Mueller
,
D.
Bräuhaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
, “
Ferroelectricity in simple binary ZrO2 and HfO2
,”
Nano Lett.
12
,
4318
4323
(
2012
).
3.
T.
Mikolajick
,
S.
Slesazeck
,
M. H.
Park
, and
U.
Schroeder
, “
Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors
,”
MRS Bull.
43
,
340
346
(
2018
).
4.
M.
Hoffmann
,
F.
Fengler
,
M.
Herzig
,
T.
Mittmann
,
B.
Max
,
U.
Schroeder
,
R.
Negrea
,
P.
Lucian
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Unveiling the double-well energy landscape in a ferroelectric layer
,”
Nature
565
,
464
467
(
2019
).
5.
H.-J.
Lee
,
M.
Lee
,
K.
Lee
,
J.
Jo
,
H.
Yang
,
Y.
Kim
,
S. C.
Chae
,
U.
Waghmare
, and
J. H.
Lee
, “
Scale-free ferroelectricity induced by flat phonon bands in HfO2
,”
Science
369
,
1343
(
2020
).
6.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
T.
Schenk
,
W.
Lee
,
K. D.
Kim
,
F. P. G.
Fengler
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
, “
Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: A comparison of model and experiment
,”
Nanoscale
9
,
9973
9986
(
2017
).
7.
T.
Shimizu
,
K.
Katayama
,
T.
Kiguchi
,
A.
Akama
,
T.
Konno
,
O.
Sakata
, and
H.
Funakubo
, “
The demonstration of significant ferroelectricity in epitaxial y-doped HfO2 film
,”
Sci. Rep.
6
,
32931
(
2016
).
8.
T.
Mittmann
,
M.
Michailow
,
P.
Lomenzo
,
J.
Gärtner
,
M.
Falkowski
,
A.
Kersch
,
T.
Mikolajick
, and
U.
Schroeder
,
Nanoscale
(to be published).
9.
M.
Materano
,
T.
Mittmann
,
P.
Lomenzo
,
C.
Zhou
,
J.
Jones
,
M.
Falkowski
,
A.
Kersch
,
T.
Mikolajick
, and
U.
Schroeder
, “
Influence of oxygen content on structure and reliability of ferroelectric HfxZr1-xO2 layers
,”
ACS Appl. Electron. Mater.
2
,
3618
(
2020
).
10.
R.
Batra
,
T. D.
Huan
,
J. L.
Jones
,
G.
Rossetti
, and
R.
Ramprasad
, “
Factors favoring ferroelectricity in Hafnia: A first- principles computational study
,”
J. Phys. Chem. C
121
,
4139
4145
(
2017
).
11.
S.
Liu
and
B. M.
Hanrahan
, “
Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films
,”
Phys. Rev. Mater.
3
,
054404
(
2019
).
12.
R.
Materlik
,
C.
Künneth
, and
A.
Kersch
, “
The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model
,”
J. Appl. Phys.
117
,
134109
(
2015
).
13.
C.
Künneth
,
R.
Materlik
, and
A.
Kersch
, “
Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1−xZrxO2 Grains
,”
J. Appl. Phys.
121
,
205304
(
2017
).
14.
Y. H.
Lee
,
S. D.
Hyun
,
H. J.
Kim
,
J. S.
Kim
,
C.
Yoo
,
T.
Moon
,
K. D.
Kim
,
H. W.
Park
,
Y. B.
Lee
,
B. S.
Kim
,
J.
Roh
,
M. H.
Park
, and
C. S.
Hwang
, “
Nucleation-limited ferroelectric orthorhombic phase formation in Hf0.5Zr0.5O2 thin films
,”
Adv. Electron. Mater.
5
,
1800436
(
2019
).
15.
X.
Sang
,
E. D.
Grimley
,
T.
Schenk
,
U.
Schroeder
, and
J. M.
Lebeau
, “
On the structural origins of ferroelectricity in HfO2 thin films
,”
Appl. Phys. Lett.
106
,
162905
(
2015
).
16.
W.
Zhou
,
S. V.
Ushakov
,
T.
Wang
,
J. G.
Ekerdt
,
A. A.
Demkov
, and
A.
Navrotsky
, “
Hafnia: Energetics of thin films and nanoparticles
,”
J. Appl. Phys.
107
,
123514
(
2010
).
17.
A. V.
Radha
,
O.
Bomati-Miguel
,
S. V.
Ushakov
,
A.
Navrotsky
, and
P.
Tartaj
, “
Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia
,”
J. Am. Ceram. Soc.
92
,
133
140
(
2009
).
18.
A.
Christensen
and
E. A.
Carter
, “
First-principles study of the surfaces of zirconia
,”
Phys. Rev. B
58
,
8050
8064
(
1998
).
19.
R.
Batra
,
H. D.
Tran
, and
R.
Ramprasad
, “
Stabilization of metastable phases in hafnia owing to surface energy effects
,”
Appl. Phys. Lett.
108
,
172902
(
2016
).
20.
B.
Hudak
,
S.
Depner
,
G.
Waetzig
,
A.
Talapatra
,
R.
Arroyave
,
S.
Banerjee
, and
B.
Guiton
,
Nat. Commun.
8
,
15316
(
2017
).
21.
M. H.
Park
,
Y. H.
Lee
, and
C. S.
Hwang
, “
Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory
,”
Nanoscale
11
,
19477
19487
(
2019
).
22.
J.
Wang
,
H.
Li
, and
R.
Stevens
, “
Hafnia and hafnia-toughened ceramics
,”
J. Mater. Sci.
27
,
5397
5430
(
1992
).
23.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
, “
Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides
,”
Adv. Electron. Mater.
5
,
1800522
(
2019
).
24.
W.
Ding
,
Y.
Zhang
,
L.
Tao
,
Q.
Yang
, and
Y.
Zhou
, “
The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: A first-principle study
,”
Acta Mater.
196
,
556
564
(
2020
).
25.
E. D.
Grimley
,
T.
Schenk
,
T.
Mikolajick
,
U.
Schroeder
, and
J. M.
LeBeau
, “
Atomic structure of domain and interphase boundaries in ferroelectric HfO2
,”
Adv. Mater. Interfaces
5
,
1701258
(
2018
).
26.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
27.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
28.
T.
Cheng
,
D.
Fang
, and
Y.
Yang
, “
The temperature dependence of grain boundary free energy of solids
,”
J. Appl. Phys.
123
,
085902
(
2018
).

Supplementary Material

You do not currently have access to this content.