Trigonal αGa2O3 is an ultrawideband semiconductor with potential applications in power electronics and ultraviolet opto-electronic devices. In this Letter, we calculate the low field electron mobility in αGa2O3 from first principles calculations. The effect of all the 30 phonon modes is taken into account for the transport calculation. The phonon dispersion and the Raman and Infrared spectra are calculated under the density functional perturbation theory formalism and compared with experiments. The electron–phonon interaction (EPI) elements on a dense reciprocal space grid are obtained using the Wannier function interpolation. The full energy dispersion of the phonons is included in both the polar and nonpolar EPI calculations. The electron mobility is then evaluated incorporating the effects of the polar, nonpolar, and ionized impurity scattering using Rode's iterative method. At room temperature, the low field isotropic average electron mobility is estimated to be ∼220 cm2/Vs predominantly limited by the polar optical phonon scattering at a doping density of 1.0×1015cm3. The anisotropy in the mobility arising from the phonon scattering is also evaluated. Temperature and dopant concentration variation of mobility is also studied, which can help in optimization of the growth for transport measurements.

1.
D.
Shinohara
and
S.
Fujita
, “
Heteroepitaxy of corundum-structured αGa2O3 thin films on αAl2O3 substrates by ultrasonic mist chemical vapor deposition
,”
Jpn. J. Appl. Phys., Part 1
47
,
7311
7313
(
2008
).
2.
M.
Feneberg
,
J.
Nixdorf
,
M. D.
Neumann
,
N.
Esser
,
L.
Artús
,
R.
Cuscó
,
T.
Yamaguchi
, and
R.
Goldhahn
, “
Ordinary dielectric function of corundumlike αGa2O3 from 40 mev to 20 ev
,”
Phys. Rev. Mater.
2
,
044601
(
2018
).
3.
T.
Oshima
,
T.
Okuno
, and
S.
Fujita
, “
Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors
,”
Jpn. J. Appl. Phys., Part 1
46
,
7217
7220
(
2007
).
4.
H. H.
Tippins
, “
Optical absorption and photoconductivity in the band edge of βGa2O3
,”
Phys. Rev.
140
,
A316
A319
(
1965
).
5.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Development of gallium oxide power devices
,”
Phys. Status Solidi A
211
,
21
26
(
2014
).
6.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Recent progress in Ga2O3 power devices
,”
Semicond. Sci. Technol.
31
,
034001
(
2016
).
7.
R.
Roy
,
V. G.
Hill
, and
E. F.
Osborn
, “
Polymorphism of Ga2O3 and the system Ga2O3H2O
,”
J. Am. Chem. Soc.
74
,
719
722
(
1952
).
8.
H. Y.
Playford
,
A. C.
Hannon
,
E. R.
Barney
, and
R. I.
Walton
, “
Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction
,”
Chemistry
19
,
2803
2813
(
2013
).
9.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
, “
First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases
,”
Phys. Rev. B
74
,
195123
(
2006
).
10.
S.
Sharma
,
K.
Zeng
,
S.
Saha
, and
U.
Singisetti
, “
Field-plated lateral Ga2O3 MOSFETs with polymer passivation and 8.03 kV breakdown voltage
,”
IEEE Electron Device Lett.
41
,
836
839
(
2020
).
11.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates
,”
IEEE Electron Device Lett.
34
,
493
495
(
2013
).
12.
T.
Oishi
,
Y.
Koga
,
K.
Harada
, and
M.
Kasu
, “
High-mobility Ga2O3 single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact
,”
Appl. Phys. Express
8
,
031101
(
2015
).
13.
S.
Poncé
and
F.
Giustino
, “
Structural, electronic, elastic, power, and transport properties of βGa2O3 from first principles
,”
Phys. Rev. Res.
2
,
033102
(
2020
).
14.
N.
Ma
,
N.
Tanen
,
A.
Verma
,
Z.
Guo
,
T.
Luo
,
H. G.
Xing
, and
D.
Jena
, “
Intrinsic electron mobility limits in βGa2O3
,”
Appl. Phys. Lett.
109
,
212101
(
2016
).
15.
Y.
Kang
,
K.
Krishnaswamy
,
H.
Peelaers
, and
C. G. V.
de Walle
, “
Fundamental limits on the electron mobility of βGa2O3
,”
J. Phys.
29
,
234001
(
2017
).
16.
K.
Mengle
and
E.
Kioupakis
, “
Vibrational and electron-phonon coupling properties of βGa2O3 from first-principles calculations: Impact on the mobility and breakdown field
,”
AIP Adv.
9
,
015313
(
2019
).
17.
K.
Ghosh
and
U.
Singisetti
, “
Ab initio calculation of electron–phonon coupling in monoclinic βGa2O3 crystal
,”
Appl. Phys. Lett.
109
,
072102
(
2016
).
18.
J.
Roberts
,
P.
Chalker
,
B.
Ding
,
R.
Oliver
,
J.
Gibbon
,
L.
Jones
,
V.
Dhanak
,
L.
Phillips
,
J.
Major
, and
F.-P.
Massabuau
, “
Low temperature growth and optical properties of αGa2O3 deposited on sapphire by plasma enhanced atomic layer deposition
,”
J. Cryst. Growth
528
,
125254
(
2019
).
19.
J. H.
Leach
,
K.
Udwary
,
J.
Rumsey
,
G.
Dodson
,
H.
Splawn
, and
K. R.
Evans
, “
Halide vapor phase epitaxial growth of βGa2O3 and αGa2O3 films
,”
APL Mater.
7
,
022504
(
2019
).
20.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
Distasio
, Jr.
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A. O.
de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum espresso
,”
J. Phys.
29
,
465901
(
2017
).
21.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
Quantum espresso: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.
21
,
395502
(
2009
).
22.
F. P.
Sabino
,
L. N.
de Oliveira
, and
J. L. F.
Da Silva
, “
Role of atomic radius and d-states hybridization in the stability of the crystal structure of M2o3(m=Al, Ga, In) oxides
,”
Phys. Rev. B
90
,
155206
(
2014
).
23.
K.
Momma
and
F.
Izumi
, “
VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
24.
M.
Marezio
and
J. P.
Remeika
, “
Bond lengths in the αGa2O3 structure and the high-pressure phase of Ga2xFexO3
,”
J. Chem. Phys.
46
,
1862
1865
(
1967
).
25.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
, “
Maximally localized Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
26.
X.
Gonze
and
C.
Lee
, “
Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory
,”
Phys. Rev. B
55
,
10355
10368
(
1997
).
27.
R. H.
Lyddane
,
R. G.
Sachs
, and
E.
Teller
, “
On the polar vibrations of alkali halides
,”
Phys. Rev.
59
,
673
676
(
1941
).
28.
R.
Cuscó
,
N.
Domènech-Amador
,
T.
Hatakeyama
,
T.
Yamaguchi
,
T.
Honda
, and
L.
Artús
, “
Lattice dynamics of a mist-chemical vapor deposition-grown corundum-like Ga2O3 single crystal
,”
J. Appl. Phys.
117
,
185706
(
2015
).
29.
F.
Giustino
, “
Electron-phonon interactions from first principles
,”
Rev. Mod. Phys.
89
,
015003
(
2017
).
30.
S.
Poncé
,
E.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
31.
F.
Giustino
,
M. L.
Cohen
, and
S. G.
Louie
, “
Electron-phonon interaction using Wannier functions
,”
Phys. Rev. B
76
,
165108
(
2007
).
32.
S.
Poncé
,
W.
Li
,
S.
Reichardt
, and
F.
Giustino
, “
First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials
,”
Rep. Prog. Phys.
83
,
036501
(
2020
).
33.
C.
Verdi
and
F.
Giustino
, “
Frohlich electron-phonon vertex from first principles
,”
Phys. Rev. Lett.
115
,
176401
(
2015
).
34.
D.
Chattopadhyay
and
H. J.
Queisser
, “
Electron scattering by ionized impurities in semiconductors
,”
Rev. Mod. Phys.
53
,
745
768
(
1981
).
35.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
2000
).
36.
D.
Rode
, “
Chapter 1: Low-field electron transport
,”
Semiconductor and Semimetals
(
Elsevier
,
1975
), pp.
1
89
.
37.
K.
Akaiwa
,
K.
Kaneko
,
K.
Ichino
, and
S.
Fujita
, “
Conductivity control of Sn-doped βGa2O3 thin films grown on sapphire substrates
,”
Jpn. J. Appl. Phys., Part 1
55
,
1202BA
(
2016
).

Supplementary Material

You do not currently have access to this content.