Reliability tests involving the application of high electrical stresses were employed to assess GaN-based vertical p-n junctions fabricated on freestanding GaN substrates with threading dislocation densities less than 104 cm−2. Electric field crowding at the device edges was eliminated by employing a shallow bevel mesa structure, thus allowing an evaluation of the reliability of the internal p-n junctions. The p-n diodes exhibited reproducible avalanche breakdown characteristics over the temperature range of 25–175 °C. No degradation was observed even during tests in which the devices were held under a reverse bias near the breakdown voltage. Despite this high degree of reliability in response to reverse bias stress, a small number of diodes were degraded during continuous forward current tests, although the majority of diodes remained unchanged. The reverse leakage current exhibited by degraded diodes was increased with an increase in the forward current density within the range of 50–500 A/cm2, while the breakdown voltages were unchanged in response to current stress. The leakage level increased exponentially with an increase in the total amount of injected carriers but eventually plateaued. In the degraded p-n diode, a luminous point in an emission microscope corresponded to one of the threading dislocations observed in the synchrotron x-ray topography, indicating that a specific dislocation played as a leakage path after injecting carriers.

1.
T.
Maeda
,
T.
Narita
,
H.
Ueda
,
M.
Kanechika
,
T.
Uesugi
,
T.
Kachi
,
T.
Kimoto
,
M.
Horita
, and
J.
Suda
, in
IEEE International Electron Devices Meeting
(
IEEE
,
San Francisco
,
2018
), p.
687
.
2.
H.
Nie
,
Q.
Diduck
,
B.
Alvarez
,
A. P.
Edwards
,
B. M.
Kayes
,
M.
Zhang
,
G.
Ye
,
T.
Prunty
,
D.
Bour
, and
I. C.
Kizilyalli
,
IEEE Electron Device Lett.
35
,
939
(
2014
).
3.
T.
Oka
,
T.
Ina
,
Y.
Ueno
, and
J.
Nishii
,
Appl. Phys. Express
8
,
054101
(
2015
).
4.
D.
Shibata
,
R.
Kajitani
,
M.
Ogawa
,
K.
Tanaka
,
S.
Tamura
,
T.
Hatsuda
,
M.
Ishida
, and
T.
Ueda
, in
IEEE International Electron Devices Meeting
(
IEEE
,
San Francisco
,
2016
), p.
248
.
5.
Y.
Zhang
,
M.
Sun
,
D.
Piedra
,
J.
Hu
,
Z.
Liu
,
Y.
Lin
,
X.
Gao
,
K.
Shepard
, and
T.
Palacios
, in
IEEE International Electron Devices Meeting
(
IEEE
,
San Francisco
,
2017
), p.
215
.
6.
R.
Tanaka
,
S.
Takashima
,
K.
Ueno
,
H.
Matsuyama
, and
M.
Edo
,
Jpn. J. Appl. Phys., Part 1
59
,
SGGD02
(
2020
).
7.
J.
Liu
,
M.
Xiao
,
Y.
Zhang
,
S.
Pidaparthi
,
H.
Cui
,
A.
Edwards
,
L.
Baubutr
,
W.
Meier
,
C.
Coles
, and
C.
Drowley
, in
IEEE International Electron Devices Meeting
(
IEEE
,
Virtual
,
2020
), p.
477
.
8.
T.
Kimoto
,
Jpn. J. Appl. Phys., Part 1
54
,
040103
(
2015
).
9.
H.
Tsuchida
,
K.
Murata
,
T.
Tawara
,
M.
Miyazato
,
T.
Miyazawa
, and
K.
Maeda
, in
IEEE International Electron Devices Meeting
(
IEEE
,
San Francisco
,
2019
), p.
470
.
10.
L.
Marona
,
P.
Wisniewski
,
P.
Prystawko
,
I.
Grzegory
,
T.
Suski
,
S.
Porowski
,
P.
Perlin
,
R.
Czernecki
, and
M.
Leszczyński
,
Appl. Phys. Lett.
88
,
201111
(
2006
).
11.
M.
Meneghini
,
N.
Trivellin
,
K.
Orita
,
S.
Takigawa
,
T.
Tanaka
,
D.
Ueda
,
G.
Meneghesso
, and
E.
Zanoni
,
Appl. Phys. Lett.
97
,
263501
(
2010
).
12.
P.
Perlin
and
Ł.
Marona
, “
InGaN laser diode degradation
,” in
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices
, edited by
O.
Ueda
and
J.
Pearton
(
Springer Science+Business Media
,
New York
,
2013
), Chap. 8, pp.
247
261
.
13.
M.
Meneghini
,
A.
Tazzoli
,
G.
Mura
,
G.
Meneghesso
, and
E.
Zanoni
,
IEEE Trans. Electron Devices
57
,
108
(
2010
).
14.
L.
Liu
,
M.
Ling
,
J.
Yang
,
W.
Xiong
,
W.
Jia
, and
G.
Wang
,
J. Appl. Phys.
111
,
093110
(
2012
).
15.
K.
Nomoto
,
B.
Song
,
Z.
Hu
,
M.
Zhu
,
M.
Qi
,
N.
Kaneda
,
T.
Mishima
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
,
IEEE Electron Device Lett.
37
,
161
(
2016
).
16.
B.
Rackauskasa
,
M. J.
Uren
,
T.
Kachi
, and
M.
Kuball
,
Microelectron. Reliab.
95
,
48
(
2019
).
17.
F.
Horikiri
,
Y.
Narita
,
T.
Yoshida
,
H.
Ohta
,
T.
Mishima
, and
T.
Nakamura
, in
International Conference on Compound Semiconductor Manufacturing Technology
(
CS MANTECH
,
Miami
,
2016
), p.
275
.
18.
I. C.
Kizilyalli
,
P.
Bui-Quang
,
D.
Disney
,
H.
Bhatia
, and
O.
Aktas
,
Microelectron. Reliab.
55
,
1654
(
2015
).
19.
H.
Fujikura
,
K.
Hayashi
,
F.
Horikiri
,
Y.
Narita
,
T.
Konno
,
T.
Yoshida
,
H.
Ohta
, and
T.
Mishima
,
Appl. Phys. Express
11
,
045502
(
2018
).
20.
H.
Fukushima
,
S.
Usami
,
M.
Ogura
,
Y.
Ando
,
A.
Tanaka
,
M.
Deki
,
M.
Kushimoto
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
,
Jpn. J. Appl. Phys., Part 1
58
,
SCCD25
(
2019
).
21.
A. S.
Barker
, Jr.
and
M.
Ilegems
,
Phys. Rev. B
7
,
743
(
1973
).
22.
T.
Maeda
,
T.
Narita
,
S.
Yamada
,
T.
Kachi
,
T.
Kimoto
,
M.
Horita
, and
J.
Suda
, in
IEEE International Electron Devices Meeting
(
IEEE
,
San Francisco
,
2019
), p.
70
.
23.
M.
Kanechika
,
S.
Yamaguchi
,
M.
Imanishi
, and
Y.
Mori
,
Jpn. J. Appl. Phys., Part 1
58
,
SCCD22
(
2019
).
24.
B.
Rackauskas
,
S.
Dalcanale
,
M. J.
Uren
,
T.
Kachi
, and
M.
Kuball
,
Appl. Phys. Lett.
112
,
233501
(
2018
).
25.
T.
Maeda
,
T.
Narita
,
H.
Ueda
,
M.
Kanechika
,
T.
Uesugi
,
T.
Kachi
,
T.
Kimoto
,
M.
Horita
, and
J.
Suda
,
IEEE Electron Device Lett.
40
,
941
(
2019
).
26.
E.
Fabris
,
M.
Meneghini
,
C.
De Santi
,
Z.
Hu
,
W.
Li
,
K.
Nomoto
,
X.
Gao
,
D.
Jena
,
H. G.
Xing
,
G.
Meneghesso
, and
E.
Zanoni
,
Microelectron. Reliab
88–90
,
568
(
2018
).
27.
M.
Meneghini
,
N.
Trivellin
,
M.
Pavesi
,
M.
Manfredi
,
U.
Zehnder
,
B.
Hahn
,
G.
Meneghesso
, and
E.
Zanoni
,
Appl. Phys. Lett.
95
,
173507
(
2009
).
28.
T.
Kachi
and
T.
Uesugi
,
Sens. Mater.
25
(
3
),
219
227
(
2013
).
29.
T.
Nakano
,
M.
Araidai
,
K.
Shiraishi
,
A.
Tanaka
,
Y.
Honda
, and
H.
Amano
,
ECS Trans.
86
,
41
(
2018
).
30.
S.
Usami
,
Y.
Ando
,
A.
Tanaka
,
K.
Nagamatsu
,
M.
Deki
,
M.
Kushimoto
,
S.
Nitta
,
Y.
Honda
,
H.
Amano
,
Y.
Sugawara
,
Y.-Z.
Yao
, and
Y.
Ishikawa
,
Appl. Phys. Lett.
112
,
182106
(
2018
).
31.
S.
Usami
,
N.
Mayama
,
K.
Toda
,
A.
Tanaka
,
M.
Deki
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
,
Appl. Phys. Lett.
114
,
232105
(
2019
).
32.
T.
Nakano
,
Y.
Harashima
,
K.
Chokawa
,
K.
Shiraishi
,
A.
Oshiyama
,
Y.
Kangawa
,
S.
Usami
,
N.
Mayama
,
K.
Toda
,
A.
Tanaka
,
Y.
Honda
, and
H.
Amano
,
Appl. Phys. Lett.
117
,
012105
(
2020
).
33.
T.
Narita
and
T.
Kachi
, “
Future challenges: Defects in GaN power devices due to fabrication processes
,” in
Characterization of Defects and Deep Levels for GaN Power Devices
, edited by
T.
Narita
and
T.
Kachi
(
AIP Publishing
,
Melville, NY
,
2020
), Chap. 8, pp.
8-1
8-6

Supplementary Material

You do not currently have access to this content.