We report I–V curves of quasi one-dimensional charge-density wave (CDW) conductors under simultaneous impacts of rf voltage at two frequencies, F and f, with Ff. We find that each Shapiro step (ShS) induced by F-irradiation behaves as a “host” surrounded with “satellites” induced by f-irradiation, e.g., by ShSs at the CDW currents corresponding to F ± f. The subharmonic “hosts” are surrounded with subharmonic “satellites,” e.g., by ShSs at the CDW currents corresponding to F/2 ± f/2. The hosts and satellites show oscillations of their widths as a function of rf amplitude. We demonstrate that each satellite can be treated as a conventional ShS, if its host ShS is taken as a reference point at which the CDW is resting. Thus, with the help of rf irradiation one can emulate CDW samples with tunable threshold voltages and extremely coherent sliding modes.

1.
P.
Monceau
, “
Electronic crystals: An experimental overview
,”
Adv. Phys.
61
,
325
(
2012
).
2.
G.
Grüner
,
Density Waves in Solids
(
Addison-Wesley
,
Reading, MA
,
1994
).
3.
S.
Brown
and
A.
Zettl
, “
Charge density wave current oscillations and interference effects
,” in
Charge Density Waves in Solids
, edited by
L. P.
Gor'kov
and
G.
Grüner
(
Elsevier
,
Amsterdam
,
1989
), Vol.
25
, p.
223
.
4.
S. G.
Zybtsev
,
S. A.
Nikonov
,
V. Ya.
Pokrovskii
,
V. V.
Pavlovskiy
, and
D.
Starešinić
, “
Step-by-step advancement of the charge-density wave in the rf-synchronized modes and oscillations of Shapiro steps width vs. rf power
,”
Phys. Rev. B
101
,
115425
(
2020
).
5.
S. A.
Nikonov
,
S. G.
Zybtsev
,
A. A.
Maizlakh
, and
V. Y.
Pokrovskii
, “
Prediction of the effects of rf irradiation on the I-V curves of a CDW compound
,”
Appl. Phys. Lett.
118
,
213106
(
2021
).
6.
S. G.
Zybtsev
,
S. A.
Nikonov
, and
V. Y.
Pokrovskii
, “
Spontaneous phase slippage and CDW synchronization near the Peierls transition
,”
Phys. Rev. B
102
,
235415
(
2020
).
7.
V. Ya.
Pokrovskii
,
S. G.
Zybtsev
,
M. V.
Nikitin
,
I. G.
Gorlova
,
V. F.
Nasretdinova
, and
S. V.
Zaitsev-Zotov
, “
High-frequency, ‘quantum’ and electromechanical effects in quasi-one-dimensional charge density wave conductors
,”
Phys.-Usp.
56
,
29
(
2013
).
8.
S. G.
Zybtsev
,
V. Ya.
Pokrovskii
,
V. F.
Nasretdinova
,
S. V.
Zaitsev-Zotov
,
V. V.
Pavlovskiy
,
A. B.
Odobesco
,
W. W.
Pai
,
M.-W.
Chu
,
Y. G.
Lin
,
E.
Zupanič
,
H. J. P.
van Midden
,
S.
Šturm
,
E.
Tchernychova
,
A.
Prodan
,
J. C.
Bennett
,
I. R.
Mukhamedshin
,
O. V.
Chernysheva
,
A. P.
Menushenkov
,
V. B.
Loginov
,
B. A.
Loginov
,
A. N.
Titov
, and
M.
Abdel-Hafiez
, “
NbS3—A unique quasi one-dimensional conductor with three charge density wave transitions
,”
Phys. Rev. B
95
,
035110
(
2017
).
9.
S. G.
Zybtsev
,
V. Y.
Pokrovskii
,
S. V.
Zaitsev-Zotov
, and
V. F.
Nasretdinova
, “
Growth, crystal structure and transport properties of one-dimensional conductors NbS3
,”
Phys. B
407
,
1696
(
2012
).
10.
A.
Zettl
and
G.
Grüner
, “
Phase coherence in the current-carrying charge-density-wave state: Ac-dc coupling experiments in NbSe3
,”
Phys. Rev. B
29
,
755
(
1984
).
11.
R. E.
Thorne
,
W. G.
Lyons
,
J. W.
Lyding
,
J. R.
Tucker
, and
J.
Bardeen
, “
Charge-density-wave transport in quasi-one-dimensional conductors. II. ac-dc interference phenomena
,”
Phys. Rev. B
35
,
6360
(
1987
).
12.
S.
Shapiro
, “
Josephson currents in superconducting tunneling: The effect of microwaves and other observations
,”
Phys. Rev. Lett.
11
,
80
(
1963
).
13.
J.
Zmuidzinas
and
P. L.
Richards
, “
Superconducting detectors and mixers for millimeter and submillimeter astrophysics
,”
Proc. IEEE
92
,
1597
(
2004
).
14.
D.
Cunnane
,
J. H.
Kawamura
,
N.
Acharya
,
M. A.
Wolak
,
X. X.
Xi
, and
B. S.
Karasik
, “
Low-noise THz MgB2 Josephson mixer
,”
Appl. Phys. Lett.
109
,
112602
(
2016
).
15.
J.-H.
Tsai
,
H.-Y.
Yang
,
T.-W.
Huang
, and
H.
Wang
, “
A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology
,”
IEEE Microwave Wireless Compon. Lett
18
,
554
(
2008
).
16.
L.
Iotti
,
S.
Krishnamurthy
,
G.
LaCaille
, and
A. M.
Niknejad
, “
A low-power 70–100-GHz mixer-first RX leveraging frequency-translational feedback
,”
IEEE J. Solid-State Circuits
55
,
2043
(
2020
).
17.
The preliminary results were discussed on the International school and workshop:
S. G.
Zybtsev
,
V. Ya.
Pokrovskii
,
V. F.
Nasretdinova
, and
S. V.
Zaitsev-Zotov
, “
RF-wave mixing in the sliding charge density wave of quasi one-dimensional conductor NbS3
,” in
International school and workshop on electronic crystals (ECRYS-2017)
, Cargese, France, 21 August–2 September
2017
, p.
162
(unpublished); available at https://drive.google.com/file/d/1a2HXid3e5v2vtpTFRJhfwtqjFDx8xvYa/view?usp=sharing.
18.
The “host” can be considered as the
zeroth
“satellite.
19.
We consider the half-period (10–8 s) in which the signs of Vdc and rf voltage coincide as the first one. During the second half-period the signs are opposite. In the absence of rf voltage δx1 = δx2, and δx = 0. Thus, δx is the measure of the effect of rf voltage on the CDW path length during the rf period. For the zeroth ShS δx = δx1 = −δx2.4 
20.
A. H.
Sonnenberg
,
L.
Amatuni
,
G. J.
Gerritsma
, and
H.
Rogalla
, “
Frequency down conversion and AC Josephson effect in HTS ramp-type junctions on MgO substrates
,”
IEEE Trans. Appl. Supercond.
9
,
3133
(
1999
).
21.
C. C.
Grimes
and
S.
Shapiro
, “
Millimeter-wave mixing with Josephson junctions
,”
Phys. Rev.
169
,
397
(
1968
).
22.
S. G.
Zybtsev
and
V. Ya.
Pokrovskii
, “
Coherence of sliding charge density wave stimulated by asynchronous RF irradiation
,”
Phys. Rev. B
88
,
125144
(
2013
).
23.
S. G.
Zybtsev
,
V. Y.
Pokrovskii
,
V. F.
Nasretdinova
, and
S. V.
Zaitsev-Zotov
, “
Anomalous photoconduction of low-temperature charge-density wave in NbS3-II as a physical basis of a method for detection of weak signals
,”
J. Commun. Technol. Electron.
63
,
1053
(
2018
).
24.
This possibility has been considered only theoretically:
D.
Jelić
,
A.
Bjeli
, and
I.
Batistić
, “
Interference effects in nonlinear charge-density-wave dynamics
,”
Phys. Rev. B
38
,
4045
(
1988
).
25.
S. A.
Nikonov
,
S. G.
Zybtsev
, and
V. Y.
Pokrovskii
, “Mixing of close frequencies with sliding charge-density waves” (unpublished).

Supplementary Material

You do not currently have access to this content.