Wide bandgap mixed halide perovskites ABX3, in which X can be I, Br, or Cl, are promising materials to form highly efficient optoelectronic devices, because the optical bandgap can be controlled over a wide range by variation of the halogen composition. However, significant nonradiative losses must be overcome to approach the efficiency limit of single-junction solar cells. Here, we present a high throughput-based investigation of the influence of processing parameters on nonradiative losses in the perovskite bulk. We perform antisolvent crystallization during spin coating and vary the solvent type, its volume, and the temperature of the subsequent annealing step. We use the photoluminescence quantum yield (PLQY) as a proxy to the presence of nonradiative losses and PL spectra as a qualitative probe for sample morphology. Using Gaussian process regression, we find that we can reliably predict PLQY from the PL spectral shape. This means that the PL spectral shape conveys the essential photophysics controlling PL quenching and thus nonradiative charge recombination. In comparison with scanning electron micrographs and x-ray diffraction data, we find that nonradiative losses in polycrystalline perovskite films are caused by increased domain size dispersion. Our method provides a simple and fast structure-sensitive in-line probe for fast morphology optimization in a high-throughput fashion.

1.
NREL
, see https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.202001042.pdf for “
Best Research Cell Efficiencies
(National Renewable Energy Laboratory,
2020
)” (last accessed on May 8, 2021).
2.
K. X.
Steirer
,
P.
Schulz
,
G.
Teeter
,
V.
Stevanovic
,
M.
Yang
,
K.
Zhu
, and
J. J.
Berry
,
ACS Energy Lett.
1
,
360
(
2016
).
3.
Z.
Li
,
T. R.
Klein
,
D. H.
Kim
,
M.
Yang
,
J. J.
Berry
,
M. F. A. M.
van Hest
, and
K.
Zhu
,
Nat. Rev. Mater.
3
,
18017
(
2018
).
4.
J. H.
Noh
,
S. H.
Im
,
J. H.
Heo
,
T. N.
Mandal
, and
S.
Il Seok
,
Nano Lett.
13
,
1764
(
2013
).
5.
Q.
Shan
,
J.
Li
,
J.
Song
,
Y.
Zou
,
L.
Xu
,
J.
Xue
,
Y.
Dong
,
C.
Huo
,
J.
Chen
,
B.
Han
, and
H.
Zeng
,
J. Mater. Chem. C
5
,
4565
(
2017
).
6.
J.
Xing
,
Y.
Zhao
,
M.
Askerka
,
L. N.
Quan
,
X.
Gong
,
W.
Zhao
,
J.
Zhao
,
H.
Tan
,
G.
Long
,
L.
Gao
,
Z.
Yang
,
O.
Voznyy
,
J.
Tang
,
Z.-H.
Lu
,
Q.
Xiong
, and
E. H.
Sargent
,
Nat. Commun.
9
,
3541
(
2018
).
7.
A.
Al-Ashouri
,
A.
Magomedov
,
M.
Roß
,
M.
Jošt
,
M.
Talaikis
,
G.
Chistiakova
,
T.
Bertram
,
J. A.
Márquez
,
E.
Köhnen
,
E.
Kasparavičius
,
S.
Levcenco
,
L.
Gil-Escrig
,
C. J.
Hages
,
R.
Schlatmann
,
B.
Rech
,
T.
Malinauskas
,
T.
Unold
,
C. A.
Kaufmann
,
L.
Korte
,
G.
Niaura
,
V.
Getautis
, and
S.
Albrecht
,
Energy Environ. Sci.
12
,
3356
(
2019
).
8.
J.
Xu
,
C. C.
Boyd
,
Z. J.
Yu
,
A. F.
Palmstrom
,
D. J.
Witter
,
B. W.
Larson
,
R. M.
France
,
J.
Werner
,
S. P.
Harvey
,
E. J.
Wolf
,
W.
Weigand
,
S.
Manzoor
,
M. F. A. M.
Van Hest
,
J. J.
Berry
,
J. M.
Luther
,
Z. C.
Holman
, and
M. D.
McGehee
,
Science
367
,
1097
(
2020
).
9.
K.
Jäger
,
L.
Korte
,
B.
Rech
, and
S.
Albrecht
,
Opt. Express
25
,
A473
(
2017
).
10.
M.
Jošt
,
E.
Köhnen
,
A. B.
Morales-Vilches
,
B.
Lipovšek
,
K.
Jäger
,
B.
Macco
,
A.
Al-Ashouri
,
J.
Krč
,
L.
Korte
,
B.
Rech
,
R.
Schlatmann
,
M.
Topič
,
B.
Stannowski
, and
S.
Albrecht
,
Energy Environ. Sci.
11
,
3511
(
2018
).
11.
T.
Leijtens
,
K. A.
Bush
,
R.
Prasanna
, and
M. D.
McGehee
,
Nat. Energy
3
,
828
(
2018
).
12.
Y.
Yang
,
M.
Yang
,
D. T.
Moore
,
Y.
Yan
,
E. M.
Miller
,
K.
Zhu
, and
M. C.
Beard
,
Nat. Energy
2
,
16207
(
2017
).
13.
P.
Caprioglio
,
F.
Zu
,
C. M.
Wolff
,
J. A.
Márquez Prieto
,
M.
Stolterfoht
,
P.
Becker
,
N.
Koch
,
T.
Unold
,
B.
Rech
,
S.
Albrecht
, and
D.
Neher
,
Sustainable Energy Fuels
3
,
550
(
2019
).
14.
P.
Caprioglio
,
M.
Stolterfoht
,
C. M.
Wolff
,
T.
Unold
,
B.
Rech
,
S.
Albrecht
, and
D.
Neher
,
Adv. Energy Mater.
9
,
1901631
(
2019
).
15.
W.
Tress
,
Adv. Energy Mater.
7
,
1602358
(
2017
).
16.
D. J.
Slotcavage
,
H. I.
Karunadasa
, and
M. D.
McGehee
,
ACS Energy Lett.
1
,
1199
(
2016
).
17.
P.
Caprioglio
,
S.
Caicedo-Dávila
,
T. C. J.
Yang
,
C. M.
Wolff
,
F.
Peña-Camargo
,
P.
Fiala
,
B.
Rech
,
C.
Ballif
,
D.
Abou-Ras
,
M.
Stolterfoht
,
S.
Albrecht
,
Q.
Jeangros
, and
D.
Neher
,
ACS Energy Lett.
6
,
419
(
2021
).
18.
M.
Xiao
,
F.
Huang
,
W.
Huang
,
Y.
Dkhissi
,
Y.
Zhu
,
J.
Etheridge
,
A.
Gray-Weale
,
U.
Bach
,
Y.-B.
Cheng
, and
L.
Spiccia
,
Angew. Chem., Int. Ed. Engl.
53
,
9898
(
2014
).
19.
E.
Gu
,
X.
Tang
,
S.
Langner
,
P.
Duchstein
,
Y.
Zhao
,
I.
Levchuk
,
V.
Kalancha
,
T.
Stubhan
,
J.
Hauch
,
H. J.
Egelhaaf
,
D.
Zahn
,
A.
Osvet
, and
C. J.
Brabec
,
Joule
4
,
1806
(
2020
).
20.
S.
Paek
,
P.
Schouwink
,
E. N.
Athanasopoulou
,
K. T.
Cho
,
G.
Grancini
,
Y.
Lee
,
Y.
Zhang
,
F.
Stellacci
,
M. K.
Nazeeruddin
, and
P.
Gao
,
Chem. Mater.
29
,
3490
(
2017
).
21.
J. C.
Hamill
,
J.
Schwartz
, and
Y. L.
Loo
,
ACS Energy Lett.
3
,
92
(
2018
).
22.
C.
Liu
,
Y.-B.
Cheng
, and
Z.
Ge
,
Chem. Soc. Rev.
49
,
1653
(
2020
).
23.
Y.-H.
Kim
,
C.
Wolf
,
Y.-T.
Kim
,
H.
Cho
,
W.
Kwon
,
S.
Do
,
A.
Sadhanala
,
C. G.
Park
,
S.-W.
Rhee
,
S. H.
Im
,
R. H.
Friend
, and
T.-W.
Lee
,
ACS Nano
11
,
6586
(
2017
).
24.
J.
Yao
,
T.
Kirchartz
,
M. S.
Vezie
,
M. A.
Faist
,
W.
Gong
,
Z.
He
,
H.
Wu
,
J.
Troughton
,
T.
Watson
,
D.
Bryant
, and
J.
Nelson
,
Phys. Rev. Appl.
4
,
14020
(
2015
).
25.
R. T.
Ross
,
J. Chem. Phys.
46
,
4590
(
1967
).
26.
M.
Stolterfoht
,
C. M.
Wolff
,
J. A.
Márquez
,
S.
Zhang
,
C. J.
Hages
,
D.
Rothhardt
,
S.
Albrecht
,
P. L.
Burn
,
P.
Meredith
,
T.
Unold
, and
D.
Neher
,
Nat. Energy
3
,
847
(
2018
).
27.
S.
Olthof
and
K.
Meerholz
,
Sci. Rep.
7
,
40267
(
2017
).
28.
S.
Langner
,
F.
Häse
,
J. D.
Perea
,
T.
Stubhan
,
J.
Hauch
,
L. M.
Roch
,
T.
Heumueller
,
A.
Aspuru-Guzik
, and
C. J.
Brabec
,
Adv. Mater.
32
,
1907801
(
2020
).
29.
D.
Bash
,
Y.
Cai
,
C.
Vijila
,
S. L.
Wong
,
Y.
Xu
,
P.
Kumar
,
J. D.
Tan
,
A.
Abutaha
,
J. J. W.
Cheng
,
Y. F.
Lim
,
I. P. S.
Tian
,
Z.
Ren
,
W. K.
Wong
,
F.
Mekki-Berrada
,
J. N.
Kumar
,
S.
Khan
,
Q.
Li
,
T.
Buonassisi
, and
K.
Hippalgaonkar
, “Machine learning and high-throughput robust design of P3HT-CNT composite thin films for high electrical conductivity,” arXiv:2011.10382 [physics.app-ph] (
2020
).

Supplementary Material

You do not currently have access to this content.