This Letter studies the reverse leakage and breakdown mechanisms of vertical GaN-on-Si Schottky barrier diodes (SBDs) with and without argon-implanted termination (ArIT). The electrical leakage characteristics in the vertical GaN-on-Si SBD without edge termination sequentially go through the thermionic field emission, variable range hopping (VRH), and trap-assisted tunneling conduction mechanisms as the reverse bias increases gradually. Its leakage and breakdown mechanisms are limited by the edge electric field crowding effect. While for the vertical GaN-on-Si SBD with ArIT (ArIT-SBD), the electrons conduction at a low reverse bias, following the space-charge-limited conduction (SCLC) model, is limited by the damage-induced traps in the implanted GaN. As the reverse bias increases up to the occurrence of breakdown, the VRH and SCLC dominate the leakage mechanism of the ArIT-SBD, which stem from intrinsic traps in GaN grown on Si. A rapidly growing leakage under a low reverse bias and enhanced breakdown voltage performance in the ArIT-SBD is attributed to the charging of the damage-induced traps in implanted GaN. This Letter not only gives in-depth insights of vertical GaN-on-Si SBDs but also provides a useful design guidance of implanted termination for high-voltage power devices.

1.
T.
Oka
,
Jpn. J. Appl. Phys., Part 1
58
,
Sb0805
(
2019
).
2.
S.
Han
,
S.
Yang
,
R.
Li
,
X. K.
Wu
, and
K.
Sheng
,
IEEE Trans. Power Electron.
34
(
6
),
5012
5018
(
2019
).
3.
J.
Liu
,
M.
Xiao
,
R.
Zhang
,
S.
Pidaparthi
,
C.
Drowley
,
L.
Baubutr
,
A.
Edwards
,
H.
Cui
,
C.
Coles
, and
Y.
Zhang
,
IEEE Electron Device Lett.
41
(
9
),
1328
1331
(
2020
).
4.
M.
Xiao
,
X.
Gao
,
T.
Palacios
, and
Y. H.
Zhang
,
Appl. Phys. Lett.
114
(
16
),
163503
(
2019
).
5.
Y.
Zhang
,
A.
Dadgar
, and
T.
Palacios
,
J. Phys. D
51
(
27
),
273001
(
2018
).
6.
R. A.
Khadar
,
C.
Liu
,
L.
Zhang
,
P.
Xiang
,
K.
Cheng
, and
E.
Matioli
,
IEEE Electron Device Lett.
39
(
3
),
401
404
(
2018
).
7.
C.
Liu
,
R.
Abdul Khadar
, and
E.
Matioli
,
IEEE Electron Device Lett.
39
(
7
),
1034
1037
(
2018
).
8.
S.
Han
,
S.
Yang
, and
K.
Sheng
,
IEEE Electron Device Lett.
39
(
4
),
572
575
(
2018
).
9.
S.
Yang
,
S.
Han
, and
K.
Sheng
,
Semicond. Sci. Technol.
36
(
2
),
024005
(
2002
).
10.
R.
Yin
,
Y.
Li
,
C. P.
Wen
,
Y.
Fu
,
Y.
Hao
,
M.
Wang
, and
B.
Shen
, in
2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD)
(
IEEE
,
Piscataway, NJ
,
2020
), pp.
298
301
.
11.
X.
Guo
,
Y.
Zhong
,
J.
He
,
Y.
Zhou
,
S.
Su
,
X.
Chen
,
J.
Liu
,
H.
Gao
,
X.
Sun
,
Q.
Zhou
,
Q.
Sun
, and
H.
Yang
,
IEEE Electron Device Lett.
42
,
473
(
2021
).
12.
Y.
Zhang
,
J.
Zhang
,
Z.
Feng
,
Z.
Hu
,
J.
Chen
,
K.
Dang
,
Q.
Yan
,
P.
Dong
,
H.
Zhou
, and
Y.
Hao
,
IEEE Trans. Electron Devices
67
(
10
),
3948
3953
(
2020
).
13.
H.
Zhou
,
Q. L.
Yan
,
J. C.
Zhang
,
Y. J.
Lv
,
Z. H.
Liu
,
Y. N.
Zhang
,
K.
Dang
,
P. F.
Dong
,
Z. Q.
Feng
,
Q.
Feng
,
J.
Ning
,
C. F.
Zhang
,
P. J.
Ma
, and
Y.
Hao
,
IEEE Electron Device Lett.
40
(
11
),
1788
1791
(
2019
).
14.
Y. Y.
Gao
,
A.
Li
,
Q.
Feng
,
Z. Z.
Hu
,
Z. Q.
Feng
,
K.
Zhang
,
X. L.
Lu
,
C. F.
Zhang
,
H.
Zhou
,
W. X.
Mu
,
Z. T.
Jia
,
J. C.
Zhang
, and
Y.
Hao
,
Nanoscale Res. Lett.
14
,
8
(
2019
).
15.
A. M.
Ozbek
and
B. J.
Baliga
,
IEEE Electron Device Lett.
32
(
10
),
1361
1363
(
2011
).
16.
D.
Alok
,
B. J.
Baliga
, and
P. K.
McLarty
,
IEEE Electron Device Lett.
15
(
10
),
394
395
(
1994
).
17.
Y.
Sun
,
K.
Zhou
,
Q.
Sun
,
J.
Liu
,
M.
Feng
,
Z.
Li
,
Y.
Zhou
,
L.
Zhang
,
D.
Li
,
S.
Zhang
,
M.
Ikeda
,
S.
Liu
, and
H.
Yang
,
Nat. Photonics
10
(
9
),
595
599
(
2016
).
18.
J.
Liu
,
Y.
Huang
,
X.
Sun
,
X.
Zhan
,
Q.
Sun
,
H.
Gao
,
M.
Feng
,
Y.
Zhou
,
M.
Ikeda
, and
H.
Yang
,
J. Phys. D
52
(
42
),
425102
(
2019
).
19.
K.
Fu
,
H.
Fu
,
X.
Huang
,
T.
Yang
,
C.
Cheng
,
P. R.
Peri
,
H.
Chen
,
J.
Montes
,
C.
Yang
,
J.
Zhou
,
X.
Deng
,
X.
Qi
,
D. J.
Smith
,
S. M.
Goodnick
, and
Y.
Zhao
,
IEEE J. Electron Devices Soc.
8
,
74
83
(
2020
).
20.
Y.
Zhang
,
M.
Sun
,
D.
Piedra
,
J.
Hennig
,
A.
Dadgar
, and
T.
Palacios
,
Appl. Phys. Lett.
111
(
16
),
163506
(
2017
).
21.
F.
Roccaforte
,
S.
Libertino
,
V.
Raineri
,
A.
Ruggiero
,
V.
Massimino
, and
L.
Calcagno
,
J. Appl. Phys.
99
(
1
),
013515
(
2006
).
22.
F. C.
Chiu
,
Adv. Mater. Sci. Eng.
18
,
578168
(
2014
).
23.
J.
Suda
,
K.
Yamaji
,
Y.
Hayashi
,
T.
Kimoto
,
K.
Shimoyama
,
H.
Namita
, and
S.
Nagao
,
Appl. Phys. Express
3
(
10
),
101003
(
2010
).
24.
Y.
Zhang
,
M.
Sun
,
Z.
Liu
,
D.
Piedra
,
J.
Hu
,
X.
Gao
, and
T.
Palacios
,
Appl. Phys. Lett.
110
(
19
),
193506
(
2017
).
25.
Y.
Zhang
,
H.
Wong
,
M.
Sun
,
S.
Joglekar
,
L.
Yu
,
N. A.
Braga
,
R. V.
Mickevicius
, and
T.
Palacios
, in
2015 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
Piscataway, NJ
,
2015
), pp.
35.31.31
35.31.34
.
26.
B. Y.
Wang
,
M.
Xiao
,
X. D.
Yan
,
H. Y.
Wong
,
J. H.
Ma
,
K.
Sasaki
,
H.
Wang
, and
Y. H.
Zhang
,
Appl. Phys. Lett.
115
(
26
),
263503
(
2019
).
27.
Z. H.
Liu
,
G. I.
Ng
,
S.
Arulkumaran
,
Y. K. T.
Maung
, and
H.
Zhou
,
Appl. Phys. Lett.
98
(
16
),
163501
(
2011
).
28.
J. R.
Nicholls
,
S.
Dimitrijev
,
P.
Tanner
, and
J.
Han
,
IEEE Trans. Electron. Devices
66
(
4
),
1675
1680
(
2019
).
29.
C. H.
Zhou
,
Q. M.
Jiang
,
S.
Huang
, and
K. J.
Chen
,
IEEE Electron Device Lett.
33
(
8
),
1132
1134
(
2012
).
30.
S.
DasGupta
,
M.
Sun
,
A.
Armstrong
,
R. J.
Kaplar
,
M. J.
Marinella
,
J. B.
Stanley
,
S.
Atcitty
, and
T.
Palacios
,
IEEE Trans. Electron Devices
59
(
8
),
2115
2122
(
2012
).
31.
A.
Armstrong
,
A. R.
Arehart
,
B.
Moran
,
S. P.
DenBaars
,
U. K.
Mishra
,
J. S.
Speck
, and
S. A.
Ringel
,
Appl. Phys. Lett.
84
(
3
),
374
376
(
2004
).
32.
Y.
Zhang
,
M.
Sun
,
H.
Wong
,
Y.
Lin
,
P.
Srivastava
,
C.
Hatem
,
M.
Azize
,
D.
Piedra
,
L.
Yu
,
T.
Sumitomo
,
N. A.
de Braga
,
R. V.
Mickevicius
, and
T.
Palacios
,
IEEE Trans. Electron Devices
62
(
7
),
2155
2161
(
2015
).
33.
M. A.
Lampert
,
Phys. Rev.
103
(
6
),
1648
1656
(
1956
).
34.
F. C.
Chiu
,
H. W.
Chou
, and
J.
Lee
,
J. Appl. Phys.
97
(
10
),
103503
(
2005
).
35.
Y.
Zhang
,
M.
Yuan
,
N.
Chowdhury
,
K.
Cheng
, and
T.
Palacios
,
IEEE Electron Device Lett.
39
(
5
),
715
718
(
2018
).
36.
S.
Zhu
,
C.
Detavernier
,
R. L.
Van Meirhaeghe
,
F.
Cardon
,
A.
Blondeel
,
P.
Clauws
,
G.
Ru
, and
B.
Li
,
Semicond. Sci. Technol.
16
(
2
),
83
90
(
2001
).
37.
S.
Sabuktagin
,
Y.-T.
Moon
,
S.
Dogan
,
A. A.
Baski
, and
H.
Morkoc
,
IEEE Electron Device Lett.
27
(
4
),
211
213
(
2006
).
38.
A. J.
Campbell
,
D. D. C.
Bradley
, and
D. G.
Lidzey
,
J. Appl. Phys.
82
(
12
),
6326
6342
(
1997
).
39.
H.
Wang
,
P. C.
Hsu
,
M.
Zhao
,
E.
Simoen
,
A.
Sibaja-Hernandez
, and
J.
Wang
,
IEEE Trans. Electron Devices
67
(
11
),
4827
4833
(
2020
).
40.
Y.
Zhang
,
M.
Sun
,
Z.
Liu
,
D.
Piedra
,
M.
Pan
,
X.
Gao
,
Y.
Lin
,
A.
Zubair
,
L.
Yu
, and
T.
Palacios
, in
2016 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
Piscataway, NJ
,
2016
), pp.
10.12.11
10.12.14
.
You do not currently have access to this content.