A new generation of ultrafast and low-noise supercontinuum (SC) sources is currently emerging, driven by the constantly increasing demands of spectroscopy, advanced microscopy, and ultrafast photonics applications for highly stable broadband coherent light sources. In this Perspective, we review recent progress enabled by advances in nonlinear optical fiber design, detail our view on the largely untapped potential for noise control in nonlinear fiber optics, and present the noise fingerprinting technique for measuring and visualizing the noise of SC sources with unprecedented detail. In our outlook, we highlight how these SC sources push the boundaries for many spectroscopy and imaging modalities and focus on their role in the development of ultrafast fiber lasers and frequency combs with ultra-low amplitude and phase noise operating in the 2 μm spectral region and beyond in the mid-IR.

1.
C. J.
Ostaszewski
,
N. M.
Stuart
,
D. M.
Lesko
,
D.
Kim
,
M. J.
Lueckheide
, and
J. G.
Navea
, “
Effects of coadsorbed water on the heterogeneous photochemistry of nitrates adsorbed on TiO2
,”
J. Phys. Chem. A
122
,
6360
6371
(
2018
).
2.
K.
Ramasesha
,
L.
De Marco
,
A.
Mandal
, and
A.
Tokmakoff
, “
Water vibrations have strongly mixed intra-and intermolecular character
,”
Nat. Chem.
5
,
935
940
(
2013
).
3.
J. M.
Dudley
,
G.
Genty
, and
S.
Coen
, “
Supercontinuum generation in photonic crystal fiber
,”
Rev. Mod. Phys.
78
,
1135
1184
(
2006
).
4.
D.
Wildanger
,
E.
Rittweger
,
L.
Kastrup
, and
S. W.
Hell
, “
STED microscopy with a supercontinuum laser source
,”
Opt. Express
16
,
9614
9621
(
2008
).
5.
M. K.
Dasa
,
G.
Nteroli
,
P.
Bowen
,
G.
Messa
,
Y.
Feng
,
C. R.
Petersen
,
S.
Koutsikou
,
M.
Bondu
,
P. M.
Moselund
,
A.
Podoleanu
 et al, “
All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region
,”
Photoacoustics
18
,
100163
(
2020
).
6.
S.
Moon
and
D. Y.
Kim
, “
Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source
,”
Opt. Express
14
,
11575
11584
(
2006
).
7.
N. M.
Israelsen
,
M.
Maria
,
M.
Mogensen
,
S.
Bojesen
,
M.
Jensen
,
M.
Haedersdal
,
A.
Podoleanu
, and
O.
Bang
, “
The value of ultrahigh resolution OCT in dermatology—Delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs
,”
Biomed. Opt. Express
9
,
2240
2265
(
2018
).
8.
C. R.
Petersen
,
P. M.
Moselund
,
L.
Huot
,
L.
Hooper
, and
O.
Bang
, “
Towards a table-top synchrotron based on supercontinuum generation
,”
Infrared Phys. Technol.
91
,
182
186
(
2018
).
9.
S.
Dupont
,
Z.
Qu
,
S.-S.
Kiwanuka
,
L. E.
Hooper
,
J. C.
Knight
,
S. R.
Keiding
, and
C. F.
Kaminski
, “
Ultra-high repetition rate absorption spectroscopy with low noise supercontinuum radiation generated in an all-normal dispersion fibre
,”
Laser Phys. Lett.
11
,
075601
(
2014
).
10.
M.
Jensen
,
I. B.
Gonzalo
,
R. D.
Engelsholm
,
M.
Maria
,
N. M.
Israelsen
,
A.
Podoleanu
, and
O.
Bang
, “
Noise of supercontinuum sources in spectral domain optical coherence tomography
,”
J. Opt. Soc. Am. B
36
,
A154
A160
(
2019
).
11.
T.
Udem
,
R.
Holzwarth
, and
T. W.
Hänsch
, “
Optical frequency metrology
,”
Nature
416
,
233
237
(
2002
).
12.
J.
Rothhardt
,
S.
Hädrich
,
J.
Delagnes
,
E.
Cormier
, and
J.
Limpert
, “
High average power near-infrared few-cycle lasers
,”
Laser Photonics Rev.
11
,
1700043
(
2017
).
13.
A. M.
Heidt
,
D.-M.
Spangenberg
,
M.
Brügmann
,
E. G.
Rohwer
, and
T.
Feurer
, “
Improved retrieval of complex supercontinuum pulses from XFROG traces using a ptychographic algorithm
,”
Opt. Lett.
41
,
4903
4906
(
2016
).
14.
A.
Okamura
,
Y.
Sakakibara
,
E.
Omoda
,
H.
Kataura
, and
N.
Nishizawa
, “
Experimental analysis of coherent supercontinuum generation and ultrashort pulse generation using cross-correlation frequency resolved optical gating (X-FROG)
,”
J. Opt. Soc. Am. B
32
,
400
406
(
2015
).
15.
A.
Rampur
,
D.-M.
Spangenberg
,
G.
Stepniewski
,
D.
Dobrakowski
,
K.
Tarnowski
,
K.
Stefanska
,
A.
Pazdzior
,
P.
Mergo
,
T.
Martynkien
,
T.
Feurer
 et al, “
Temporal fine structure of all-normal dispersion fiber supercontinuum pulses caused by non-ideal pump pulse shapes
,”
Opt. Express
28
,
16579
16593
(
2020
).
16.
T.
Hori
,
J.
Takayanagi
,
N.
Nishizawa
, and
T.
Goto
, “
Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber
,”
Opt. Express
12
,
317
324
(
2004
).
17.
A. M.
Heidt
, “
Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers
,”
J. Opt. Soc. Am. B
27
,
550
559
(
2010
).
18.
A. M.
Heidt
,
A.
Hartung
, and
H.
Bartelt
, “
Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers
,” in
The Supercontinuum Laser Source: The Ultimate White Light
(
Springer
,
2016
), pp.
247
280
.
19.
A. M.
Heidt
,
J. S.
Feehan
,
J. H. V.
Price
, and
T.
Feurer
, “
Limits of coherent supercontinuum generation in normal dispersion fibers
,”
J. Opt. Soc. Am. B
34
,
764
775
(
2017
).
20.
E.
Genier
,
S.
Grelet
,
R. D.
Engelsholm
,
P.
Bowen
,
P. M.
Moselund
,
O.
Bang
,
J. M.
Dudley
, and
T.
Sylvestre
, “
An ultra-flat, low-noise and linearly polarized fiber supercontinuum source covering 670–1390 nm
,”
Opt. Lett.
46
,
1820
1823
(
2021
).
21.
C.-M.
Chen
and
P. L.
Kelley
, “
Nonlinear pulse compression in optical fibers: Scaling laws and numerical analysis
,”
J. Opt. Soc. Am. B
19
,
1961
1967
(
2002
).
22.
C.
Finot
,
B.
Kibler
,
L.
Provost
, and
S.
Wabnitz
, “
Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers
,”
J. Opt. Soc. Am. B
25
,
1938
1948
(
2008
).
23.
M.
Nakazawa
,
K.
Tamura
,
H.
Kubota
, and
E.
Yoshida
, “
Coherence degradation in the process of supercontinuum generation in an optical fiber
,”
Opt. Fiber Technol.
4
,
215
223
(
1998
).
24.
U.
Møller
and
O.
Bang
, “
Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime
,”
Electron. Lett.
49
,
63
65
(
2013
).
25.
N.
Bloembergen
and
Y. R.
Shen
, “
Coupling between vibrations and light waves in Raman laser media
,”
Phys. Rev. Lett.
12
,
504
507
(
1964
).
26.
S.
Coen
,
A. H. L.
Chau
,
R.
Leonhardt
,
J. D.
Harvey
,
J. C.
Knight
,
W. J.
Wadsworth
, and
P. S. J.
Russell
, “
Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers
,”
J. Opt. Soc. Am. B
19
,
753
764
(
2002
).
27.
S.
Coen
,
D. A.
Wardle
, and
J. D.
Harvey
, “
Observation of non-phase-matched parametric amplification in resonant nonlinear optics
,”
Phys. Rev. Lett.
89
,
273901
(
2002
).
28.
F.
Vanholsbeeck
,
P.
Emplit
, and
S.
Coen
, “
Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain
,”
Opt. Lett.
28
,
1960
(
2003
).
29.
K. L.
Corwin
,
N. R.
Newbury
,
J. M.
Dudley
,
S.
Coen
,
S. A.
Diddams
,
K.
Weber
, and
R. S.
Windeler
, “
Fundamental noise limitations to supercontinuum generation in microstructure fiber
,”
Phys. Rev. Lett.
90
,
113904
(
2003
).
30.
G.
Genty
,
S.
Coen
, and
J. M.
Dudley
, “
Fiber supercontinuum sources (invited)
,”
J. Opt. Soc. Am. B
24
,
1771
1785
(
2007
).
31.
N.
Nishizawa
,
T.
Niinomi
,
Y.
Nomura
,
L.
Jin
, and
Y.
Ozeki
, “
Octave spanning coherent supercontinuum comb generation based on Er-doped fiber lasers and their characterization
,”
IEEE J. Sel. Top. Quantum Electron.
24
,
1
9
(
2018
).
32.
N.
Nishizawa
and
J.
Takayanagi
, “
Octave spanning high-quality supercontinuum generation in all-fiber system
,”
J. Opt. Soc. Am. B
24
,
1786
1792
(
2007
).
33.
M.
Klimczak
,
G.
Soboń
,
R.
Kasztelanic
,
K. M.
Abramski
, and
R.
Buczyński
, “
Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser
,”
Sci. Rep.
6
,
19284
(
2016
).
34.
B.
Sierro
and
A.
Heidt
, “
Noise amplification in all-normal dispersion fiber supercontinuum generation and its impact in ultrafast photonics applications
,”
OSA Continuum
3
,
2347
2361
(
2020
).
35.
D. S.
S.
Rao
,
R. D.
Engelsholm
,
I. B.
Gonzalo
,
B.
Zhou
,
P.
Bowen
,
P. M.
Moselund
,
O.
Bang
, and
M.
Bache
, “
Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber
,”
Opt. Lett.
44
,
2216
2219
(
2019
).
36.
Z.
Eslami
,
P.
Ryczkowski
,
L.
Salmela
, and
G.
Genty
, “
Low-noise octave-spanning mid-infrared supercontinuum generation in a multimode chalcogenide fiber
,”
Opt. Lett.
45
,
3103
3106
(
2020
).
37.
N. R.
Newbury
,
B. R.
Washburn
,
K. L.
Corwin
, and
R. S.
Windeler
, “
Noise amplification during supercontinuum generation in microstructure fiber
,”
Opt. Lett.
28
,
944
946
(
2003
).
38.
M.
Klimczak
,
B.
Siwicki
,
A.
Heidt
, and
R.
Buczyński
, “
Coherent supercontinuum generation in soft glass photonic crystal fibers
,”
Photonics Res.
5
,
710
727
(
2017
).
39.
K.
Tarnowski
,
T.
Martynkien
,
P.
Mergo
,
K.
Poturaj
,
A.
Anuszkiewicz
,
P.
Béjot
,
F.
Billard
,
O.
Faucher
,
B.
Kibler
, and
W.
Urbanczyk
, “
Polarized all-normal dispersion supercontinuum reaching 2.5 μm generated in a birefringent microstructured silica fiber
,”
Opt. Express
25
,
27452
27463
(
2017
).
40.
A.
Hartung
,
J.
Bierlich
,
A.
Lorenz
,
J.
Kobelke
, and
M.
Jäger
, “
Design and fabrication of all-normal dispersion nanohole suspended-core fibers
,”
J. Opt. Soc. Am. B
36
,
3404
3410
(
2019
).
41.
Y.
Liu
,
Y.
Zhao
,
J.
Lyngsø
,
S.
You
,
W. L.
Wilson
,
H.
Tu
, and
S. A.
Boppart
, “
Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation
,”
J. Lightwave Technol.
33
,
1814
1820
(
2015
).
42.
I. B.
Gonzalo
,
R. D.
Engelsholm
,
M. P.
Sørensen
, and
O.
Bang
, “
Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation
,”
Sci. Rep.
8
,
6579
(
2018
).
43.
G. P.
Agrawal
,
P. L.
Baldeck
, and
R. R.
Alfano
, “
Modulation instability induced by cross-phase modulation in optical fibers
,”
Phys. Rev. A
39
,
3406
3413
(
1989
).
44.
E.
Genier
,
A. N.
Ghosh
,
S.
Bobba
,
P.
Bowen
,
P. M.
Moselund
,
O.
Bang
,
J. M.
Dudley
, and
T.
Sylvestre
, “
Cross-phase modulation instability in PM ANDi fiber-based supercontinuum generation
,”
Opt. Lett.
45
,
3545
3548
(
2020
).
45.
J. S.
Feehan
and
J. H. V.
Price
, “
Decoherence due to XPM-assisted Raman amplification for polarization or wavelength offset pulses in all-normal dispersion supercontinuum generation
,”
J. Opt. Soc. Am. B
37
,
635
644
(
2020
).
46.
J. S.
Feehan
,
E.
Brunetti
,
S.
Yoffe
,
W.
Li
,
S. M.
Wiggins
,
D. A.
Jaroszynski
, and
J. H. V.
Price
, “
Noise-related polarization dynamics for femto and picosecond pulses in normal dispersion fibers
,”
Opt. Express
28
,
21447
21463
(
2020
).
47.
F.
Adler
and
S. A.
Diddams
, “
High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region
,”
Opt. Lett.
37
,
1400
1402
(
2012
).
48.
H.
Hoogland
,
A.
Thai
,
D.
Sánchez
,
S.
Cousin
,
M.
Hemmer
,
M.
Engelbrecht
,
J.
Biegert
, and
R.
Holzwarth
, “
All-PM coherent 2.05 μm thulium/holmium fiber frequency comb source at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs
,”
Opt. Express
21
,
31390
31394
(
2013
).
49.
C.
Gaida
,
T.
Heuermann
,
M.
Gebhardt
,
E.
Shestaev
,
T. P.
Butler
,
D.
Gerz
,
N.
Lilienfein
,
P.
Sulzer
,
M.
Fischer
,
R.
Holzwarth
,
A.
Leitenstorfer
,
I.
Pupeza
, and
J.
Limpert
, “
High-power frequency comb at 2μ m wavelength emitted by a Tm-doped fiber laser system
,”
Opt. Lett.
43
,
5178
5181
(
2018
).
50.
A. M.
Heidt
,
J. M.
Hodasi
,
A.
Rampur
,
D.-M.
Spangenberg
,
M.
Ryser
,
M.
Klimczak
, and
T.
Feurer
, “
Low noise all-fiber amplification of a coherent supercontinuum at 2 μm and its limits imposed by polarization noise
,”
Sci. Rep.
10
,
16734
(
2020
).
51.
A.
Rampur
,
Y.
Stepanenko
,
G.
Stȩpniewski
,
T.
Kardaś
,
D.
Dobrakowski
,
D.-M.
Spangenberg
,
T.
Feurer
,
A.
Heidt
, and
M.
Klimczak
, “
Ultra low-noise coherent supercontinuum amplification and compression below 100 fs in an all-fiber polarization-maintaining thulium fiber amplifier
,”
Opt. Express
27
,
35041
(
2019
).
52.
D. M.
Lesko
,
H.
Timmers
,
S.
Xing
,
A.
Kowligy
,
A. J.
Lind
, and
S. A.
Diddams
, “
A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser
,”
Nat. Photonics
15
,
281
286
(
2021
).
53.
N.
Zhang
,
X.
Peng
,
Y.
Wang
,
S.
Dai
,
Y.
Yuan
,
J.
Su
,
G.
Li
,
P.
Zhang
,
P.
Yang
, and
X.
Wang
, “
Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion
,”
Opt. Express
27
,
10311
10319
(
2019
).
54.
R. P.
Sopalla
,
G. K.
Wong
,
N. Y.
Joly
,
M. H.
Frosz
,
X.
Jiang
,
G.
Ahmed
, and
P. S. J.
Russell
, “
Generation of broadband circularly polarized supercontinuum light in twisted photonic crystal fibers
,”
Opt. Lett.
44
,
3964
3967
(
2019
).
55.
J. H.
Price
,
X.
Feng
,
A. M.
Heidt
,
G.
Brambilla
,
P.
Horak
,
F.
Poletti
,
G.
Ponzo
,
P.
Petropoulos
,
M.
Petrovich
,
J.
Shi
,
M.
Ibsen
,
W. H.
Loh
,
H. N.
Rutt
, and
D. J.
Richardson
, “
Supercontinuum generation in non-silica fibers
,”
Opt. Fiber Technol.
18
,
327
344
(
2012
).
56.
K. F.
Lee
,
N.
Granzow
,
M. A.
Schmidt
,
W.
Chang
,
L.
Wang
,
Q.
Coulombier
,
J.
Troles
,
N.
Leindecker
,
K. L.
Vodopyanov
,
P. G.
Schunemann
 et al, “
Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation
,”
Opt. Lett.
39
,
2056
2059
(
2014
).
57.
M.
Klimczak
,
B.
Siwicki
,
B.
Zhou
,
M.
Bache
,
D.
Pysz
,
O.
Bang
, and
R.
Buczyński
, “
Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 μm in all-solid soft glass photonic crystal fibers
,”
Opt. Express
24
,
29406
29416
(
2016
).
58.
Y.
Hua
,
G.
Zhou
,
W.
Liu
,
M.
Xin
,
F. X.
Kärtner
, and
G.
Chang
, “
Femtosecond two-color source synchronized at 100-as-precision based on SPM-enabled spectral selection
,”
Opt. Lett.
45
,
3410
3413
(
2020
).
59.
J.
Rothhardt
,
A. M.
Heidt
,
S.
Hädrich
,
S.
Demmler
,
J.
Limpert
, and
A.
Tünnermann
, “
High stability soliton frequency-shifting mechanisms for laser synchronization applications
,”
J. Opt. Soc. Am. B
29
,
1257
1262
(
2012
).
60.
P.
Abdolghader
,
A. F.
Pegoraro
,
N. Y.
Joly
,
A.
Ridsdale
,
R.
Lausten
,
F.
Légaré
, and
A.
Stolow
, “
All normal dispersion nonlinear fibre supercontinuum source characterization and application in hyperspectral stimulated Raman scattering microscopy
,”
Opt. Express
28
,
35997
36008
(
2020
).
61.
D. S. S.
Rao
,
M.
Jensen
,
L.
Grüner-Nielsen
,
J. T.
Olsen
,
P.
Heiduschka
,
B.
Kemper
,
J.
Schnekenburger
,
M.
Glud
,
M.
Mogensen
,
N. M.
Israelsen
, and
O.
Bang
, “
Shot-noise limited, supercontinuum based optical coherence tomography
,”
Light Sci. Appl.
(in press).
62.
N. M.
Kearns
,
A. C.
Jones
,
M. B.
Kunz
,
R. T.
Allen
,
J. T.
Flach
, and
M. T.
Zanni
, “
Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator
,”
J. Phys. Chem. A
123
,
3046
3055
(
2019
).
63.
R.
Viljoen
,
P.
Neethling
,
D.
Spangenberg
,
A.
Heidt
,
H.-M.
Frey
,
T.
Feurer
, and
E.
Rohwer
, “
Implementation of temporal ptychography algorithm, i2PIE, for improved single-beam coherent anti-Stokes Raman scattering measurements
,”
J. Opt. Soc. Am. B
37
,
A259
A265
(
2020
).
64.
G.
Dwapanyin
,
D.
Spangenberg
,
A.
Heidt
,
T.
Feurer
,
G.
Bosman
,
P.
Neethling
, and
E.
Rohwer
, “
Generalized spectral phase-only time-domain ptychographic phase reconstruction applied in nonlinear microscopy
,”
J. Opt. Soc. Am. B
37
,
A285
A292
(
2020
).
65.
H.
Tu
,
Y.
Liu
,
D.
Turchinovich
,
M.
Marjanovic
,
J. K.
Lyngsø
,
J.
Lægsgaard
,
E. J.
Chaney
,
Y.
Zhao
,
S.
You
,
W. L.
Wilson
 et al, “
Stain-free histopathology by programmable supercontinuum pulses
,”
Nat. Photonics
10
,
534
(
2016
).
66.
K. P.
Herdzik
,
K. N.
Bourdakos
,
P. B.
Johnson
,
A. P.
Lister
,
A. P.
Pitera
,
C-Y
Guo
,
P.
Horak
,
D. J.
Richardson
,
J. H.
Price
, and
S.
Mahajan
, “
Multimodal spectral focusing CARS and SFG microscopy with a tailored coherent continuum from a microstructured fiber
,”
Appl. Phys. B
126
,
84
(
2020
).
67.
A.
Rampur
,
D.-M.
Spangenberg
,
B.
Sierro
,
P.
Hänzi
,
M.
Klimczak
, and
A. M.
Heidt
, “
Perspective on the next generation of ultra-low noise fiber supercontinuum sources and their emerging applications in spectroscopy, imaging, and ultrafast photonics
,”
Bern Open Research and Information System (BORIS)
, (
2021
).
You do not currently have access to this content.