Antiferroelectric (AFE) properties of ultrathin ZrO2 films prepared by atomic layer deposition are systematically investigated with different film thicknesses and postmetallization annealing (PMA) temperatures. After wake-up, excellent AFE characteristics are observed for the ZrO2 thickness from 5.3 to 9.5 nm through the polarization–electric field and switching current–electric field measurements. The thickness dependence and PMA temperature dependence of AFE properties and their relations to the crystalline phase are discussed. The best AFE properties, such as the largest maximum polarization and a relatively small remanent polarization, are obtained in 6 nm-thick ZrO2 with 400 °C PMA, attributed to the existence of the highest ratio of a tetragonal phase in the film. AFE properties are relatively degraded in other thicknesses of ZrO2 films with 400 °C PMA, which is attributable to the existence of large amounts of an amorphous phase and a monoclinic phase in 5.3 and 9.5 nm-thick ZrO2 films, respectively. Furthermore, it is found that higher PMA temperature of 600 °C can lead to a relatively larger remanent polarization for AFE ZrO2 due to the increase in the ratio of the orthorhombic phase in ZrO2 films.

1.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
, and
U.
Schröder
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
T. S.
Böscke
,
S.
Teichert
,
D.
Bräuhaus
,
J.
Müller
,
U.
Schröder
,
U.
Böttger
, and
T.
Mikolajick
,
Appl. Phys. Lett.
99
,
112904
(
2011
).
3.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Müller
,
D.
Bräuhaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
,
Nano Lett.
12
,
4318
(
2012
).
4.
J.
Müller
,
T. S.
Böscke
,
S.
Müller
,
E.
Yurchuk
,
P.
Polakowski
,
J.
Paul
,
D.
Martin
,
T.
Schenk
,
K.
Khullar
,
A.
Kersch
,
W.
Weinreich
,
S.
Riedel
,
K.
Seidel
,
A.
Kumar
,
T. M.
Arruda
,
S. V.
Kalinin
,
T.
Schlösser
,
R.
Boschke
,
R.
van Bentum
,
U.
Schröder
, and
T.
Mikolajick
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2013
), pp.
280
283
.
5.
J.
Müller
,
T. S.
Böscke
,
D.
Bräuhaus
,
U.
Schröder
,
U.
Böttger
,
J.
Sundqvist
,
P.
Kücher
,
T.
Mikolajick
, and
L.
Frey
,
Appl. Phys. Lett.
99
,
112901
(
2011
).
6.
M. H.
Lee
,
P.-G.
Chen
,
C.
Liu
,
K.-Y.
Chu
,
C.-C.
Cheng
,
M.-J.
Xie
,
S.-N.
Liu
,
J.-W.
Lee
,
S.-J.
Huang
,
M.-H.
Liao
,
M.
Tang
,
K.
Li
, and
M.-C.
Chen
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2015
), pp.
616
619
.
7.
W.
Chung
,
M.
Si
, and
P. D.
Ye
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2017
), pp.
365
368
.
8.
D.
Kwon
,
S.
Cheema
,
N.
Shanker
,
K.
Chatterjee
,
Y. H.
Liao
,
A. J.
Tan
,
C.
Hu
, and
S.
Salahuddin
,
IEEE Electron Device Lett.
40
(
6
),
993
(
2019
).
9.
H.
Mulaosmanovic
,
J.
Ocker
,
S.
Müller
,
M.
Noack
,
J.
Müller
,
P.
Polakowski
,
T.
Mikolajick
, and
S.
Slesazeck
, in
Symposium on VLSI Technology
(
IEEE
,
2017
), pp.
T176
T177
.
10.
M.
Jerry
,
P. Y.
Chen
,
J.
Zhang
,
P.
Sharma
,
K.
Ni
,
S.
Yu
, and
S.
Datta
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2017
), pp.
139
142
.
11.
E.
Nako
,
K.
Toprasertpong
,
R.
Nakane
,
Z.
Wang
,
Y.
Miyatake
,
M.
Takenaka
, and
S.
Takagi
, “
Proposal and experimental demonstration of reservoir computing using Hf0.5Zr0.5O2/Si FeFETs for neuromorphic applications
” in
Symposium on VLSI Technology
(
IEEE
,
2020
).
12.
C.
Kittel
,
Phys. Rev.
82
,
729
(
1951
).
13.
S. E.
Reyes-Lillo
,
K. F.
Garrity
, and
K. M.
Rabe
,
Phys. Rev. B
90
,
140103
(
2014
).
14.
R.
Materlik
,
C.
Künneth
, and
A.
Kersch
,
J. Appl. Phys.
117
,
134109
(
2015
).
15.
S.
Lombardo
,
C.
Nelson
,
K.
Chae
,
S.
Reyes-Lillo
,
M.
Tian
,
N.
Tasneem
,
Z.
Wang
,
M.
Hoffmann
,
D.
Triyoso
,
S.
Consiglio
,
K.
Tapily
,
R.
Clark
,
G.
Leusink
,
K.
Cho
,
A.
Kummel
,
J.
Kacher
, and
A.
Khan
, “
Atomic-scale imaging of polarization switching in an (anti-)ferroelectric memory material: zirconia (ZrO2)
,” in
Symposium on VLSI Technology
(
IEEE
,
2020
), p.
TF2.8
.
16.
M.
Pešic
,
U.
Schröder
,
S.
Slesazeck
, and
T.
Mikolajick
,
IEEE Trans. Device Mater. Reliab.
18
,
154
(
2018
).
17.
M.
Pešic
,
M.
Hoffmann
,
C.
Richter
,
T.
Mikolajick
, and
U.
Schröder
,
Adv. Funct. Mater.
26
,
7486
(
2016
).
18.
M.
Pešić
,
S.
Knebel
,
M.
Hoffmann
,
C.
Richter
,
T.
Mikolajick
, and
U.
Schröder
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2016
), pp.
298
301
.
19.
M. H.
Lee
,
Y.-T.
Wei
,
K.-Y.
Chu
,
J.-J.
Huang
,
C.-W.
Chen
,
C.-C.
Cheng
,
M.-J.
Chen
,
H.-Y.
Lee
,
Y.-S.
Chen
,
L.-H.
Lee
, and
M.-J.
Tsai
,
IEEE Electron Device Lett.
36
,
294
(
2015
).
20.
M. H.
Lee
,
Y.-T.
Wei
,
C.
Liu
,
J.-J.
Huang
,
M.
Tang
,
Y.-L.
Chueh
,
K.-Y.
Chu
,
M.-J.
Chen
,
H.-Y.
Lee
,
Y.-S.
Chen
,
L.-H.
Lee
, and
M.-J.
Tsai
,
IEEE J. Electron Devices Soc.
3
,
377
(
2015
).
21.
M. H.
Lee
,
K.-T.
Chen
,
C.-Y.
Liao
,
G.-Y.
Siang
,
C.
Lo
,
H.-Y.
Chen
,
Y.-J.
Tseng
,
C.-Y.
Chueh
,
C.
Chang
,
Y.-Y.
Lin
,
Y.-J.
Yang
,
F.-C.
Hsieh
,
S. T.
Chang
,
M.-H.
Liao
,
K.-S.
Li
, and
C. W.
Liu
, in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), pp.
566
569
.
22.
K.
Karda
,
A.
Jain
,
C.
Mouli
, and
M. A.
Alam
,
Appl. Phys. Lett.
106
,
163501
(
2015
).
23.
M.
Yamaguchi
,
T.
Gotow
,
M.
Takenaka
, and
S.
Takagi
,
Jpn. J. Appl. Phys., Part 1
58
,
SBBA15
(
2019
).
24.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K.
Do Kim
, and
C. S.
Hwang
,
Adv. Energy Mater.
4
,
1400610
(
2014
).
25.
F.
Ali
,
X.
Liu
,
D.
Zhou
,
X.
Yang
,
J.
Xu
,
T.
Schenk
,
J.
Müller
,
U.
Schröder
,
F.
Cao
, and
X.
Dong
,
J. Appl. Phys.
122
,
144105
(
2017
).
26.
P. D.
Lomenzo
,
C. C.
Chung
,
C.
Zhou
,
J. L.
Jones
, and
T.
Nishida
,
Appl. Phys. Lett.
100
,
232904
(
2017
).
27.
B.
Allouche
,
H. J.
Hwang
,
T. J.
Yoo
, and
B. H.
Lee
,
Nanoscale
12
,
3894
(
2020
).
28.
C.
Zhao
,
G.
Roebben
,
M.
Heyns
, and
O.
Van Der Biest
,
Key Eng. Mater.
206–213
,
1285
(
2001
).
29.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
,
Nano Energy
12
,
131
(
2015
).
30.
S.
Choi
,
T.
Shiraishi
,
T.
Kiguchi
,
T.
Shimizu
,
H.
Funakubo
, and
T. J.
Konno
,
Appl. Phys. Lett.
113
,
262903
(
2018
).
31.
S.
Starschich
and
U.
Böttger
,
J. Appl. Phys.
123
,
044101
(
2018
).
32.
Z.
Wang
,
A. A.
Gaskell
,
M.
Dopita
,
D.
Kriegner
,
N.
Tasneem
,
J.
Mack
,
N.
Mukherjee
,
Z.
Karim
, and
A. I.
Khan
,
Appl. Phys. Lett.
112
,
222902
(
2018
).
33.
P. D.
Lomenzo
and
T.
Mikolajick
, “
Thickness scaling of AFE-RAM ZrO2 capacitors with high cycling endurance and low process temperature
,” in
IEEE International Memory Workshop (IMW)
(
IEEE
,
2020
).
34.
D.
Viladot
,
M.
Veron
,
M.
Gemmi
,
F.
Peiro
,
J.
Portillo
,
S.
ESTRADE
,
J.
Mendoza
,
N.
Llorca-Isern
, and
S.
Nicolopoulos
,
J. Microsc.
252
(
1
),
23
(
2013
).
35.
W.
Hamouda
,
A.
Pancotti
,
C.
Lubin
,
L.
Tortech
,
C.
Richter
,
T.
Mikolajick
,
U.
Schroeder
, and
N.
Barrett
,
J. Appl. Phys.
127
,
064105
(
2020
).
36.
W.
Weinreich
,
L.
Wilde
,
J.
Müller
,
J.
Sundqvist
,
E.
Erben
,
J.
Heitmann
,
M.
Lemberger
, and
A. J.
Bauer
,
J. Vac. Sci. Technol. B
31
,
01A119
(
2013
).
37.
S.
Shibayama
,
T.
Nishimura
,
S.
Migita
, and
A.
Toriumi
,
J. Appl. Phys.
124
,
184101
(
2018
).
38.
K.
Murakami
,
M.
Rommel
,
V.
Yanev
,
A. J.
Bauer
, and
L.
Frey
,
AIP Conf. Proc.
1395
,
134
(
2011
).
39.
Y.
Goh
,
S. H.
Cho
,
S. K.
Park
, and
S.
Jeon
,
Nanoscale
12
,
9024
(
2020
).
40.
G.
Jegert
,
A.
Kersch
,
W.
Weinreich
, and
P.
Lugli
,
IEEE Trans. Electron Devices
58
,
327
(
2011
).
41.
R.
Meyer
,
R.
Waser
,
K.
Prume
,
T.
Schmitz
, and
S.
Tiedke
,
Appl. Phys. Lett
86
,
142907
(
2005
).

Supplementary Material

You do not currently have access to this content.