Topological insulators (TIs) host spin-momentum locked surface states that are inherently susceptible to magnetic proximity modulations, making them promising for nano-electronic, spintronic, and quantum computing applications. While much effort has been devoted to studying (quantum) anomalous Hall effects in magnetic magnetically doped TIs, the inherent magnetoresistance (MR) properties in magnetic proximity-coupled surface states remain largely unexplored. Here, we directly exfoliate Bi2Se3 TI flakes onto a magnetic insulator, yttrium iron garnet, and measure the MR at various temperatures. We experimentally observe an anisotropic magnetoresistance that is consistent with a magnetized surface state. Our results indicate that the TI has magnetic anisotropy out of the sample plane, which opens an energy gap between the surface states. By applying a magnetic field along any in-plane orientation, the magnetization of the TI rotates toward the plane and the gap closes. Consequently, we observe a large (∼6.5%) MR signal that is attributed to an interplay between coherent rotation of magnetization within a topological insulator and abrupt switching of magnetization in the underlying magnetic insulator.

1.
T.
McGuire
and
R.
Potter
,
IEEE Trans. Magn.
11
,
1018
(
1975
).
2.
L.
Liu
,
T.
Moriyama
,
D.
Ralph
, and
R.
Buhrman
,
Phys. Rev. Lett.
106
,
036601
(
2011
).
3.
S.
Langenfeld
,
V.
Tshitoyan
,
Z.
Fang
,
A.
Wells
,
T.
Moore
, and
A.
Ferguson
,
Appl. Phys. Lett.
108
,
192402
(
2016
).
4.
J.
Sklenar
,
W.
Zhang
,
M. B.
Jungfleisch
,
H.
Saglam
,
S.
Grudichak
,
W.
Jiang
,
J. E.
Pearson
,
J. B.
Ketterson
, and
A.
Hoffmann
,
Phys. Rev. B
95
,
224431
(
2017
).
5.
A.
Mellnik
,
J.
Lee
,
A.
Richardella
 et al.,
Nature
511
,
449
(
2014
).
6.
Y.
Fan
,
P.
Upadhyaya
,
X.
Kou
 et al.,
Nat. Mater.
13
,
699
(
2014
).
7.
J.
Han
,
A.
Richardella
,
S. A.
Siddiqui
,
J.
Finley
,
N.
Samarth
, and
L.
Liu
,
Phys. Rev. Lett.
119
,
077702
(
2017
).
8.
H.
Wang
,
J.
Kally
,
J. S.
Lee
,
T.
Liu
,
H.
Chang
,
D. R.
Hickey
,
K. A.
Mkhoyan
,
M.
Wu
,
A.
Richardella
, and
N.
Samarth
,
Phys. Rev. Lett.
117
,
076601
(
2016
).
9.
J.-C.
Rojas-Sánchez
,
S.
Oyarzún
,
Y.
Fu
,
A.
Marty
 et al.,
Phys. Rev. Lett.
116
,
096602
(
2016
).
10.
T.
Chiba
,
S.
Takahashi
, and
G. E.
Bauer
,
Phys. Rev. B
95
,
094428
(
2017
).
11.
L.
Šmejkal
,
J.
Železnỳ
,
J.
Sinova
, and
T.
Jungwirth
,
Phys. Rev. Lett.
118
,
106402
(
2017
).
12.
H.
Nakayama
,
M.
Althammer
,
Y.-T.
Chen
 et al.,
Phys. Rev. Lett.
110
,
206601
(
2013
).
13.
P.
Wei
,
F.
Katmis
,
B. A.
Assaf
,
H.
Steinberg
,
P.
Jarillo-Herrero
,
D.
Heiman
, and
J. S.
Moodera
,
Phys. Rev. Lett.
110
,
186807
(
2013
).
14.
M.
Lang
,
M.
Montazeri
,
M. C.
Onbasli
 et al.,
Nano Lett.
14
,
3459
(
2014
).
15.
F.
Katmis
,
V.
Lauter
,
F. S.
Nogueira
 et al.,
Nature
533
,
513
(
2016
).
16.
Y.
Fanchiang
,
K.
Chen
,
C.
Tseng
,
C.
Chen
,
C.
Cheng
,
S.
Yang
,
C.
Wu
,
S.
Lee
,
M.
Hong
, and
J.
Kwo
,
Nat. Commun.
9
,
223
(
2018
).
17.
Y.
Chen
,
J.-H.
Chu
,
J.
Analytis
 et al.,
Science
329
,
659
(
2010
).
18.
R.
Yu
,
W.
Zhang
,
H.-J.
Zhang
,
S.-C.
Zhang
,
X.
Dai
, and
Z.
Fang
,
Science
329
,
61
(
2010
).
19.
C.-Z.
Chang
,
J.
Zhang
,
X.
Feng
 et al.,
Science
340
,
1232003
(
2013
).
20.
K.
Yasuda
,
A.
Tsukazaki
,
R.
Yoshimi
,
K.
Takahashi
,
M.
Kawasaki
, and
Y.
Tokura
,
Phys. Rev. Lett.
117
,
127202
(
2016
).
21.
S.
Cho
,
N. P.
Butch
,
J.
Paglione
, and
M. S.
Fuhrer
,
Nano Lett.
11
,
1925
(
2011
).
22.
J. G.
Checkelsky
,
Y. S.
Hor
,
R. J.
Cava
, and
N.
Ong
,
Phys. Rev. Lett.
106
,
196801
(
2011
).
23.
D.
Kim
,
S.
Cho
,
N. P.
Butch
,
P.
Syers
,
K.
Kirshenbaum
,
S.
Adam
,
J.
Paglione
, and
M. S.
Fuhrer
,
Nat. Phys.
8
,
459
(
2012
).
24.
S.
Cho
,
B.
Dellabetta
,
A.
Yang
,
J.
Schneeloch
,
Z.
Xu
,
T.
Valla
,
G.
Gu
,
M. J.
Gilbert
, and
N.
Mason
,
Nat. Commun.
4
,
1689
(
2013
).
25.
H.
Chang
,
P.
Li
,
W.
Zhang
,
T.
Liu
,
A.
Hoffmann
,
L.
Deng
, and
M.
Wu
,
IEEE Magn. Lett.
5
,
1
(
2014
).
26.
S.
Li
,
W.
Zhang
,
J.
Ding
,
J. E.
Pearson
,
V.
Novosad
, and
A.
Hoffmann
,
Nanoscale
8
,
388
(
2016
).
27.
M. B.
Jungfleisch
,
J.
Ding
,
W.
Zhang
,
W.
Jiang
,
J. E.
Pearson
,
V.
Novosad
, and
A.
Hoffmann
,
Nano Lett.
17
,
8
(
2017
).
28.
J.
Chen
,
H.
Qin
,
F.
Yang
 et al.,
Phys. Rev. Lett.
105
,
176602
(
2010
).
29.
M.
Liu
,
J.
Zhang
,
C.-Z.
Chang
 et al.,
Phys. Rev. Lett.
108
,
036805
(
2012
).
30.
Q. I.
Yang
,
M.
Dolev
,
L.
Zhang
 et al.,
Phys. Rev. B
88
,
081407
(
2013
).
31.
Y. G.
Semenov
,
X.
Duan
, and
K. W.
Kim
,
Phys. Rev. B
86
,
161406
(
2012
).
32.
D.
Kong
,
Y.
Chen
,
J. J.
Cha
 et al.,
Nat. Nanotechnol.
6
,
705
(
2011
).
33.
H.
Nakayama
,
Y.
Kanno
,
H.
An
,
T.
Tashiro
,
S.
Haku
,
A.
Nomura
, and
K.
Ando
,
Phys. Rev. Lett.
117
,
116602
(
2016
).
34.
S.
Lee
,
S.
Grudichak
,
J.
Sklenar
,
C.
Tsai
,
M.
Jang
,
Q.
Yang
,
H.
Zhang
, and
J. B.
Ketterson
,
J. Appl. Phys.
120
,
033905
(
2016
).
35.
T. G.
Rijks
,
S.
Lenczowski
,
R.
Coehoorn
, and
W.
De Jonge
,
Phys. Rev. B
56
,
362
(
1997
).
36.
M. J.
Donahue
and
D. G.
Porter
, “
OOMMF User's Guide, Version 1.0
,”
Technical Report No. NISTIR 6376
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
1999
).
37.
P.
He
,
S. S.-L.
Zhang
,
D.
Zhu
,
Y.
Liu
,
Y.
Wang
,
J.
Yu
,
G.
Vignale
, and
H.
Yang
,
Nat. Phys.
14
,
495
(
2018
).
38.
E.
de Vries
,
S.
Pezzini
,
M.
Meijer
,
N.
Koirala
,
M.
Salehi
,
J.
Moon
,
S.
Oh
,
S.
Wiedmann
, and
T.
Banerjee
,
Phys. Rev. B
96
,
045433
(
2017
).
39.
C.
Klewe
,
T.
Kuschel
,
J.-M.
Schmalhorst
,
F.
Bertram
,
O.
Kuschel
,
J.
Wollschläger
,
J.
Strempfer
,
M.
Meinert
, and
G.
Reiss
,
Phys. Rev. B
93
,
214440
(
2016
).
40.
A. Q.
Chen
,
M. J.
Park
,
S. T.
Gill
,
Y.
Xiao
,
D.
Reig
,
I.
Plessis
,
G. J.
MacDougall
,
M. J.
Gilbert
, and
N.
Mason
,
Nat. Commun.
9
,
3478
(
2018
).
41.
J. G.
Analytis
,
J.-H.
Chu
,
Y.
Chen
,
F.
Corredor
,
R. D.
McDonald
,
Z.
Shen
, and
I. R.
Fisher
,
Phys. Rev. B
81
,
205407
(
2010
).

Supplementary Material

You do not currently have access to this content.