In classical and quantum systems, order is of fundamental importance to many branches of science. Still, disorder is prevalent in our natural world. It manifests in various ways, and overcoming its limitations would open up exciting applications. In this work, we numerically show that disorder-induced Anderson localization can be mitigated and transmission systematically restored in random media through a self-organization process relying on energy dissipation. Under the scattering pressure produced by a driving optical field, a colloidal suspension composed of strongly polydisperse (i.e., random size) particles spontaneously assembles a Bloch-like mode with a broad transmission band. This mode displays a deterministic transmission scaling law that overcomes the statistical exponential decay expected in random media. This work demonstrates that, through the continuous dissipation of energy, amorphous materials can collectively synchronize with a coherent drive field and assemble a crystalline order. Self-organization, thus, offers a robust approach for addressing the physical limitations of disorder and immediately opens the door to applications in slow-light engineering and the development of “bottom-up” photonic materials.

1.
H.
Sirringhaus
,
Adv. Mater.
26
,
1319
(
2014
).
2.
J.
Yang
and
F. W.
Wise
,
J. Phys. Chem. C
119
,
3338
(
2015
).
3.
D. P.
McMahon
and
A.
Troisi
,
ChemPhysChem
11
,
2067
(
2010
).
4.
R.
Noriega
,
J.
Rivnay
,
K.
Vandewal
,
F. P. V.
Koch
,
N.
Stingelin
,
P.
Smith
,
M. F.
Toney
, and
A.
Salleo
,
Nat. Mater.
12
,
1038
(
2013
).
5.
M.
Imada
,
A.
Fujimori
, and
Y.
Tokura
,
Rev. Mod. Phys.
70
,
1039
(
1998
).
6.
A.
Lagendijk
,
B.
van Tiggelen
, and
D. S.
Wiersma
,
Phys. Today
62
(
8
),
24
(
2009
).
7.
L.
Sanchez-Palencia
and
M.
Lewenstein
,
Nat. Phys.
6
,
87
(
2010
).
8.
R.
Nandkishore
and
D. A.
Huse
,
Annu. Rev. Condens. Matter Phys.
6
,
15
(
2015
).
9.
L.
Sapienza
,
H.
Thyrrestrup
,
S.
Stobbe
,
P. D.
Garcia
,
S.
Smolka
, and
P.
Lodahl
,
Science
327
,
1352
(
2010
).
10.
A.
Maity
,
S.
Mujumdar
, and
V.
Polshettiwar
,
ACS Appl. Mater. Interfaces
10
,
23392
(
2018
).
11.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
12.
B.
Wang
,
S.
Mazoyer
,
J. P.
Hugonin
, and
P.
Lalanne
,
Phys. Rev. B
78
,
24518
(
2008
).
13.
S.
Mazoyer
,
J. P.
Hugonin
, and
P.
Lalanne
,
Phys. Rev. Lett.
103
,
063903
(
2009
).
14.
S.
Mookherjea
,
J. S.
Park
,
S.-H.
Yang
, and
P. R.
Bandaru
,
Nat. Photonics
2
,
90
(
2008
).
15.
E.
Gil-Santos
,
C.
Baker
,
A.
Lemaître
,
C.
Gomez
,
G.
Leo
, and
I.
Favero
,
Nat. Commun.
8
,
14267
(
2017
).
16.
J.
Liang
,
L. Y.
Ren
,
M. J.
Yun
,
X.
Han
, and
X. J.
Wang
,
J. Appl. Phys.
110
,
2
(
2011
).
17.
Y.
Zhao
,
Y. N.
Zhang
,
Q.
Wang
, and
H.
Hu
,
IEEE Trans. Nanotechnol.
14
,
407
(
2015
).
18.
P.
Dong
,
W.
Qian
,
H.
Liang
,
R.
Shafiiha
,
D.
Feng
,
G.
Li
,
J. E.
Cunningham
,
A. V.
Krishnamoorthy
, and
M.
Asghari
,
Opt. Express
18
,
20298
(
2010
).
19.
Y.
Shen
,
I. B.
Divliansky
,
D. N.
Basov
, and
S.
Mookherjea
,
Opt. Lett.
36
,
2668
(
2011
).
20.
M.
Hafezi
,
E. A.
Demler
,
M. D.
Lukin
, and
J. M.
Taylor
,
Nat. Phys.
7
,
907
(
2011
).
21.
E.
Gil-Santos
,
M.
Labousse
,
C.
Baker
,
A.
Goetschy
,
W.
Hease
,
C.
Gomez
,
A.
Lemaître
,
G.
Leo
,
C.
Ciuti
, and
I.
Favero
,
Phys. Rev. Lett.
118
,
063605
(
2017
).
22.
M.
Fialkowski
,
K. J. M.
Bishop
,
R.
Klajn
,
S. K.
Smoukov
,
C. J.
Campbell
, and
B. A.
Grzybowski
,
J. Phys. Chem. B
110
,
2482
(
2006
).
23.
S. H.
Kim
,
S. Y.
Lee
,
S. M.
Yang
, and
G. R.
Yi
,
NPG Asia Mater.
3
,
25
(
2011
).
24.
M. A.
Boles
,
M.
Engel
, and
D. V.
Talapin
,
Chem. Rev.
116
,
11220
(
2016
).
25.
C. B.
Murray
,
C. R.
Kagan
, and
M. G.
Bawendi
,
Annu. Rev. Mater. Sci.
30
,
545
(
2000
).
26.
R. E.
Mirollo
and
S. H.
Strogatz
,
SIAM J. Appl. Math.
50
,
1645
(
1990
).
27.
N.
Shimoyama
,
K.
Sugawara
,
T.
Mizuguchi
,
Y.
Hayakawa
, and
M.
Sano
,
Phys. Rev. Lett.
76
,
3870
(
1996
).
28.
A.
Bricard
,
J.-B.
Caussin
,
N.
Desreumaux
,
O.
Dauchot
, and
D.
Bartolo
,
Nature
503
,
95
(
2013
).
29.
N.
Bachelard
,
C.
Ropp
,
M.
Dubois
,
R.
Zhao
,
Y.
Wang
, and
X.
Zhang
,
Nat. Mater.
16
,
808
(
2017
).
30.
C.
Ropp
,
N.
Bachelard
,
D.
Barth
,
Y.
Wang
, and
X.
Zhang
,
Nat. Photonics
12
,
739
(
2018
).
31.
Q.
Chen
,
P.
Torroni
,
S.
Villata
,
J.
Hsu
, and
R.
Goebel
,
PRIMA 2015: Principles and Practice of Multi-Agent Systems
(
Springer International Publishing
,
Cham
,
2015
).
32.
G. M.
Whitesides
,
B. A.
Grzybowski
, and
H. A.
Stone
,
Nature
405
,
1033
(
2000
).
33.
A.
Morin
,
N.
Desreumaux
,
J.-B.
Caussin
, and
D.
Bartolo
,
Nat. Phys.
13
,
63
67
(
2017
).
34.
A.
Cazé
,
R.
Pierrat
, and
R.
Carminati
,
Phys. Rev. Lett.
111
,
053901
(
2013
).
35.
A.
Peña
,
A.
Girschik
,
F.
Libisch
,
S.
Rotter
, and
A. A.
Chabanov
,
Nat. Commun.
5
,
3488
(
2014
).
36.
T.
Kachman
,
J. A.
Owen
, and
J. L.
England
,
Phys. Rev. Lett.
119
,
038001
(
2017
).
37.
A.
Yariv
and
P.
Yeh
,
Photonics: Optical Electronics in Modern Communications
(
Oxford University Press
,
New York
,
2007
).
38.
I. G.
Denisov
,
Y. V.
Grinkova
,
A. A.
Lazarides
, and
S. G.
Sligar
,
J. Am. Chem. Soc.
126
,
3477
(
2004
).
39.
P.
Lalanne
,
S.
Coudert
,
G.
Duchateau
, et al.,
ACS photonics
6
(
1
),
4
17
(
2018
).

Supplementary Material

You do not currently have access to this content.