We designed a high-performance polymer electret material using a deep-learning-based de novo molecule generator. By statistically analyzing the enrichment of the functional groups of the generated molecules, the hydroxyl group was determined to be crucial for enhancing the electron gain energy. Incorporating such acquired knowledge, we designed a molecule using cyclic transparent optical polymer (CYTOP; perfluoro-3-butenyl-vinyl ether). The molecule was synthesized, and its surface potential for a 15-μm-thick film is kept at −3 kV for more than 800 h. Its performance was significantly better than all commercialized CYTOP polymer electrets, indicating great potential for its application in vibration-based energy harvesting. Our results demonstrate the application of machine learning in polymer electret design and confirm the combination of molecule generation and functional group enrichment analysis to be a promising chemical discovery method achieved via human–artificial intelligence collaboration.

1.
Y.
Suzuki
,
IEEJ Trans. Elec. Electron Eng.
6
,
101
(
2011
).
2.
Electromechanically Active Polymers—A Concise Reference
, edited by
F.
Carpi
(
Springer International Publishing
,
Switzerland
,
2016
).
3.
J.
Boland
,
Y.-H.
Chao
,
Y.
Suzuki
, and
Y. C.
Tai
,
The Sixteenth Annual International Conference on Micro Electro Mechanical Systems
(MEMS-03 Kyoto) (
IEEE
,
2003
), p.
538
.
4.
Y.
Sakane
,
Y.
Suzuki
, and
N.
Kasagi
,
J. Micromech. Microeng.
18
,
104011
(
2008
).
5.
K.
Kashiwagi
,
K.
Okano
,
T.
Miyajima
,
Y.
Sera
,
N.
Tanabe
,
Y.
Morizawa
, and
Y.
Suzuki
,
J. Micromech. Microeng.
21
,
125016
(
2011
).
7.
S.
Kim
,
K.
Suzuki
,
A.
Sugie
,
H.
Yoshida
,
M.
Yoshida
, and
Y.
Suzuki
,
Sci. Technol. Adv. Mater.
19
,
486
(
2018
).
8.
S.
Kim
,
A.
Melnyk
,
D.
Andrienko
, and
Y.
Suzuki
,
J. Phys. Chem. B
124
,
10507
(
2020
).
9.
K.
Terayama
,
M.
Sumita
,
R.
Tamura
, and
K.
Tsuda
,
Acc. Chem. Res.
54
,
1334
(
2021
).
10.
G. M.
Treich
,
M.
Tefferi
,
S.
Nasreen
,
A.
Mannodi-Kanakkithodi
,
Z.
Li
,
R.
Ramprasad
,
G. A.
Sotzing
, and
Y.
Cao
,
IEEE Trans. Dielectr. Electr. Insul.
24
,
732
(
2017
).
11.
A.
Mannodi-Kanakkithodi
,
A.
Chandrasekaran
,
C.
Kim
,
T. D.
Huan
,
G.
Pilania
,
V.
Botu
, and
R.
Ramprasad
,
Mater. Today
21
,
785
(
2018
).
12.
B.
Sanchez-Lengeling
and
A.
Aspuru-Guzik
,
Science
361
,
360
(
2018
).
13.
X.
Yang
,
J.
Zhang
,
K.
Yoshizoe
,
K.
Terayama
, and
K.
Tsuda
,
Sci. Technol. Adv. Mater.
18
,
972
(
2017
).
14.
M.
Sumita
,
X.
Yang
,
S.
Ishihara
,
R.
Tamura
, and
K.
Tsuda
,
ACS Cent. Sci.
4
,
1126
(
2018
).
15.
H. J.
Wilson
and
P. R.
Daugherty
,
Harv. Bus. Rev.
96
,
114
(
2018
); avaliable at https://www.accenture.com/t00010101t000000z__w__/_acnmedia/pdf-84/accenture-collaborative-intelligence-2018.pdf.
16.
D.
Weininger
,
J. Chem. Inf. Model.
28
,
31
(
1988
).
17.
M.
Nakata
and
T.
Shimazaki
,
J. Chem. Inf. Model.
57
,
1300
(
2017
).
18.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al.,
Gaussian 16 Revision C.01
(
Gaussian, Inc.
,
Wallingford CT
,
2016
).
19.
K.
Hagiwara
,
M.
Goto
,
Y.
Iguchi
,
T.
Tajima
,
Y.
Yasuno
,
H.
Kodama
,
K.
Kidokoro
, and
Y.
Suzuki
,
IEEE Trans. Dielectr. Electr. Insul.
19
,
1291
(
2012
).
20.
S.
Kim
,
K.
Suzuki
, and
Y.
Suzuki
,
J. Phys.: Conf. Ser.
1407
,
012031
(
2019
).

Supplementary Material

You do not currently have access to this content.