Charge-density wave (CDW) transport is studied in the whiskers of orthorhombic TaS3 suspended between piezoelectric actuators. It is found that when the frequency of rf voltage applied to the actuators coincides with a vibration resonance of the whisker, the I–V curves show Shapiro-step-like features, similar with those under rf voltage applied directly to the sample. We provide evidence that the features observed are coupled with the periodic lattice deformation. The effect of vibrations appears surprisingly strong: a time-dependent strain not exceeding 10−4 results in a periodic stop of the CDW. The result suggests an area of electromechanical effects inherent to sliding CDWs.

1.
G.
Grüner
,
Density Waves in Solids
(
Addison-Wesley
,
Reading
,
MA
,
1994
).
2.
P.
Monceau
, “
Electronic crystals: An experimental overview
,”
Adv. Phys.
61
,
325
(
2012
).
3.
S.
Shapiro
, “
Josephson currents in superconducting tunneling: The effect of microwaves and other observations
,”
Phys. Rev. Lett.
11
,
80
(
1963
).
4.
S.
Shapiro
,
A.
Janus
, and
S.
Holly
, “
Effect of microwaves on Josephson currents in superconducting tunneling
,”
Rev. Mod. Phys.
36
,
223
(
1964
).
5.
S.
Brown
and
A.
Zettl
, in
Charge Density Wave Current Oscillations and Interference Effects, in Charge Density Waves in Solids
, edited by
L. P.
Gor'kov
and
G.
Grüner
(
Elsevier
,
Amsterdam, North-Holland
,
1989
). Vol.
25
, p.
223
.
6.
J. W.
Brill
, “Elastic properties of low-dimensional materials,” in
Handbook of Elastic Properties of Solids, Liquids, and Gases
, edited by
M.
Levy
,
H. E.
Bass
, and
R. R.
Stern
(
Academic Press
,
San Diego
,
2001
), Vol.
2
, p.
143
.
7.
G.
Mozurkewich
, “
Phase-relaxation interpretation of elastic softening induced by sliding charge-density waves
,”
Phys. Rev. B
42
,
11183
(
1990
).
8.
V. Ya.
Pokrovskii
,
S. G.
Zybtsev
,
M. V.
Nikitin
,
I. G.
Gorlova
,
V. F.
Nasretdinova
, and
S. V.
Zaitsev-Zotov
, “
High-frequency, ‘quantum’ and electromechanical effects in quasi-one-dimensional charge density wave conductors
,”
Phys.-Usp.
56
,
29
(
2013
).
9.
S.
Hoen
,
B.
Burk
,
A.
Zettl
, and
M.
Inui
, “
Metastable length states of a random system: TaS3
,”
Phys. Rev. B
46
,
1874
(
1992
).
10.
V. Ya.
Pokrovskii
,
S. G.
Zybtsev
, and
I. G.
Gorlova
, “
Torsional strain of TaS3 whiskers on the charge-density wave depinning
,”
Phys. Rev. Lett.
98
,
206404
(
2007
).
11.
V. Ya.
Pokrovskii
,
S. G.
Zybtsev
,
V. B.
Loginov
,
V. N.
Timofeev
,
D. V.
Kolesov
,
I. V.
Yaminsky
, and
I. G.
Gorlova
, “
Deformations of charge-density wave crystals under electric field
,”
Physica B
404
,
437
(
2009
).
12.
J. W.
Brill
and
W.
Roark
, “
Electric field dependence of elastic properties of TaS3
,”
Phys. Rev. Lett.
53
,
846
(
1984
).
13.
R. L.
Jacobsen
and
G.
Mozurkewich
, “
Stiffness reduction associated with charge-density-wave sliding: Temperature and bias dependences in TaS3
,”
Phys. Rev. B
42
,
2778
(
1990
).
14.
Z. G.
Xu
and
J. W.
Brill
, “
Relaxation and elastic anomalies in charge-density-wave conductors
,”
Phys. Rev. B
45
,
3953
(
1992
).
15.
X.-D.
Xiang
and
J. W.
Brill
, “
Shear modulus of TaS3
,”
Phys. Rev. B
36
(
R
),
2969
(
1987
).
16.
J.
Nichols
,
D.
Dominko
,
L.
Ladino
,
J.
Zhou
, and
J. W.
Brill
, “
Characterization of the torsional piezoelectriclike response of tantalum trisulfide associated with charge-density-wave depinning
,”
Phys. Rev. B
79
(
R
),
241110
(
2009
).
17.
S. G.
Zybtsev
,
M. V.
Nikitin
, and
V. Y.
Pokrovskii
, “
Shapiro steps in the torsion of a quasi-one-dimensional conductor TaS3
,”
JETP Lett.
92
,
405
(
2010
).
18.
M. V.
Nikitin
,
S. G.
Zybtsev
, and
V. Y.
Pokrovskii
, “
Tunable harmonic vibrations of quasi one-dimensional conductors induced by sliding charge-density Wave
,”
Phys. Rev. B
86
,
045104
(
2012
).
19.
V. Y.
Pokrovskii
,
M. V.
Nikitin
, and
S. G.
Zybtsev
, “
Self-detection of mechanical oscillations of charge-density wave conductors
,”
Physica B
460
,
39
(
2015
).
20.
M. V.
Nikitin
,
V. Y.
Pokrovskii
,
S. G.
Zybtsev
, and
A. V.
Frolov
, “
Self-Detection of ultrasonic standing waves and anomaly of Young's modulus at uniaxial extension whiskers of the quasi-one-dimensional conductor TaS3
,”
JETP Lett.
109
,
51
(
2019
).
21.
S. G.
Zybtsev
and
V. Ya.
Pokrovskii
, “
Quantization of states and strain-induced transformation of charge-density waves in the quasi one-dimensional conductor TaS3
,”
Phys. Rev. B
94
,
115140
(
2016
).
22.
S. E.
Brown
,
G.
Grüner
, and
L.
Mihály
, “
Interference phenomena in charge-density waves for nonsinusoidal external drives
,”
Solid State Commun.
57
,
165
(
1986
).
23.
H.
Zhang
,
J.
Nichols
, and
J. W.
Brill
, “
Torque and temperature dependence of the hysteretic voltage-induced torsional strain in tantalum trisulfide
,”
Phys. Rev. B
84
,
125134
(
2011
).
24.
R. S.
Lear
,
M. J.
Skove
,
E. P.
Stillwell
, and
J. W.
Brill
, “
Stress dependence of the charge-density-wave transitions in NbSe3 and TaS3
,”
Phys. Rev. B
29
,
5656
(
1984
).
25.
V. B.
Preobrazhensky
and
A. N.
Taldenkov
, “
The quasi-one-dimensional conductor under uniaxial strain: Non-ohmic conduction and dc-induced voltage oscillations in orthorhombic TaS3
,”
Synth. Met.
19
,
837
(
1987
).
26.
K.
Das
,
M.
Chung
,
M. J.
Skove
, and
G. X.
Tessema
, “
Possible stress-induced phase transition in o-TaS3
,”
Phys. Rev. B
52
,
7915
(
1995
).
27.
S.
Bukhari
,
I.
Md
,
A.
Haziot
, and
J.
Beamish
, “
Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures
,”
J. Phys.: Conf. Ser.
568
,
032004
(
2014
).
28.
V.
Sazonova
,
Y.
Yaish
,
H.
Üstünel
,
D.
Roundy
,
T. A.
Arias
, and
P. L.
McEuen
, “
A tunable carbon nanotube electromechanical oscillator
,”
Nature
431
,
284
(
2004
).
29.
M. V.
Nikitin
,
V. Y.
Pokrovskii
, and
S. G.
Zybtsev
, “
Effect of uniaxial tension of whiskers of TaS3 quasi-one-dimensional conductor on excitation and detection of resonance mechanical oscillations
,”
J. Commun. Technol. Electron.
63
,
1217
(
2018
).
30.
We determined the “zero point” as the point of the onset of resistance growth vs. the bar displacement. At smaller strains (sagging) the heterodyning revealed numerous modes, while their effect on resistance appeared relatively small. At the zero point the number of modes decreased, while their effect on the resistance increased. At higher strains the amplitudes of the peaks observed with heterodyning decreases rapidly.
31.
R. E.
Thorne
,
W. G.
Lyons
,
J. W.
Lyding
,
J. R.
Tucker
, and
J.
Bardeen
, “
Charge-density-wave transport in quasi-one-dimensional conductors. II. ac-dc interference phenomena
,”
Phys. Rev. B
35
,
6360
(
1987
).
32.
S. G.
Zybtsev
,
S. A.
Nikonov
,
V. Ya.
Pokrovskii
,
V. V.
Pavlovskiy
, and
D.
Starešinić
, “
Step-by-step advancement of the charge density wave in the rf-synchronized modes and oscillations of the width of Shapiro steps with respect to the rf power applied
,”
Phys. Rev. B
101
,
115425
(
2020
).
33.
In particular, for TaS3 with ε increase its in-chain component q is known to increase with respect to the pristine lattice with g ≡ (δq/q)/ε = (0.17–0.33).21 For pure crystals the in-chain coherence length of the CDW is about 10–100 μm,34,35 i.e., N = 104–105 wavelengths. If we consider a variation of ε by 10−4, for the old configuration it will result in a phase gain over the coherence length by ∼2πgεN, on the order of unity. This means that the new equilibrium configuration of the CDW will be essentially different. Correspondingly, the old configuration appears far from the potential minimum. Consideration of phase gain in 3D may result in still higher sensitivity of the CDW configuration to strain.
34.
G.
Mihály
,
G.
Hutiray
, and
L.
Mihály
, “
Macroscopic coherence length of charge-density waves in orthorhombic TaS3
,”
Phys. Rev. B
28
,
4896
(
1983
).
35.
V. Y.
Pokrovskii
and
S. V.
Zaitsev-Zotov
, “
Inhomogeneous spatial structure of the CDW metastable states: Step-like and continuous temperature evolution
,”
Synth. Met.
29
,
439
(
1989
).
36.
The high sensitivity of Et to the CDW phase gain was experimentally demonstrated for the case of nano-sized TaS3 samples.37 In the case of 0- or 1-dimensional pinning Et strongly varies with q change even if equilibrium CDW configurations are considered.
37.
S. V.
Zaitsev-Zotov
,
V. Ya.
Pokrovskii
, and
J. C.
Gill
, “
Mesoscopic behavior on the threshold voltage in ultra-small specimens of o-TaS3
,”
J. Phys. I
2
,
111
(
1992
).
38.
S. E.
Brown
and
G.
Grüner
, “
Shapiro steps in orthorhombic TaS3
,”
Phys. Rev. B
31
,
8302
(
1985
).

Supplementary Material

You do not currently have access to this content.