The development of spintronic oscillators is driven by their potential applications in radio frequency telecommunication and neuromorphic computing. In this work, we propose a spintronic oscillator based on the chiral coupling in thin magnetic films with patterned anisotropy. With an in-plane magnetized disk imprinted on an out-of-plane magnetized slab, the oscillator takes a polar vortex-like magnetic structure in the disk stabilized by a strong Dzyaloshinskii–Moriya interaction. By means of micromagnetic simulations, we investigate its dynamic properties under applied spin current, and by placing an ensemble of oscillators in the near vicinity, we demonstrate their synchronization with different resonant frequencies. Finally, we show their potential application in neuromorphic computing using a network with six oscillators.

1.
S.
Bonetti
,
P.
Muduli
,
F.
Mancoff
, and
J.
Åkerman
, “
Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz
,”
Appl. Phys. Lett.
94
,
102507
(
2009
).
2.
K. Y.
Guslienko
,
B. A.
Ivanov
,
V.
Novosad
 et al, “
Eigenfrequencies of vortex state excitations in magnetic submicron-size disks
,”
J. Appl. Phys.
91
,
8037
8039
(
2002
).
3.
V.
Novosad
,
F. Y.
Fradin
,
P. E.
Roy
 et al, “
Magnetic vortex resonance in patterned ferromagnetic dots
,”
Phys. Rev. B
72
,
024455
(
2005
).
4.
S. B.
Choe
,
Y.
Acremann
,
A.
Scholl
 et al, “
Vortex core-driven magnetization dynamics
,”
Science
304
,
420
422
(
2004
).
5.
V. S.
Pribiag
,
I. N.
Krivorotov
,
G. D.
Fuchs
 et al, “
Magnetic vortex oscillator driven by d.c. spin-polarized current
,”
Nat. Phys.
3
,
498
503
(
2007
).
6.
T.
Ono
and
Y.
Nakatani
, “
Magnetic domain wall oscillator
,”
Appl. Phys. Express
1
,
0613011
(
2008
).
7.
A.
Bisig
,
L.
Heyne
,
O.
Boulle
, and
M.
Kläui
, “
Tunable steady-state domain wall oscillator with perpendicular magnetic anisotropy
,”
Appl. Phys. Lett.
95
,
162504
(
2009
).
8.
J. H.
Franken
,
R.
Lavrijsen
,
J. T.
Kohlhepp
,
H. J. M.
Swagten
, and
B.
Koopmans
, “
Tunable magnetic domain wall oscillator at an anisotropy boundary
,”
Appl. Phys. Lett.
98
,
102512
(
2011
).
9.
M.
Voto
,
L.
Lopez-Diaz
, and
E.
Martinez
, “
Pinned domain wall oscillator as a tuneable direct current spin wave emitter
,”
Sci. Rep.
7
,
13559
(
2017
).
10.
F.
Garcia-Sanchez
,
J.
Sampaio
,
N.
Reyren
,
V.
Cros
, and
J. V.
Kim
, “
A skyrmion-based spin-torque nano-oscillator
,”
New J. Phys.
18
,
075011
(
2016
).
11.
S.
Zhang
,
J.
Wang
,
Q.
Zheng
 et al, “
Current-induced magnetic skyrmions oscillator
,”
New J. Phys.
17
,
23061
(
2015
).
12.
W. H.
Rippard
,
M. R.
Pufall
,
S.
Kaka
,
S. E.
Russek
, and
T. J.
Silva
, “
Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts
,”
Phys. Rev. Lett.
92
,
027201
(
2004
).
13.
S. I.
Kiselev
,
J. C.
Sankey
,
I. N.
Krivorotov
 et al, “
Microwave oscillations of a nanomagnet driven by a spin-polarized current
,”
Nature
425
,
380
383
(
2003
).
14.
D.
Houssameddine
,
J. F.
Sierra
,
D.
Gusakova
 et al, “
Spin torque driven excitations in a synthetic antiferromagnet
,”
Appl. Phys. Lett.
96
,
072511
(
2010
).
15.
V. E.
Demidov
,
S.
Urazhdin
,
H.
Ulrichs
 et al, “
Magnetic nano-oscillator driven by pure spin current
,”
Nat. Mater.
11
,
1028
(
2012
).
16.
S.
Saha
,
P.
Flauger
,
C.
Abert
 et al, “
Control of damping in perpendicularly magnetized thin films using spin-orbit torques
,”
Phys. Rev. B
101
,
224401
(
2020
).
17.
A.
Pikovsky
,
J.
Kurths
, and
M.
Rosenblum
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol.
56
.
18.
A.
Ruotolo
,
V.
Cros
,
B.
Georges
 et al, “
Phase-locking of magnetic vortices mediated by antivortices
,”
Nat. Nanotechnol.
4
,
528
532
(
2009
).
19.
F. B.
Mancoff
,
N. D.
Rizzo
,
B. N.
Engel
, and
S.
Tehrani
, “
Phase-locking in double-point-contact spin-transfer devices
,”
Nature
437
,
393
395
(
2005
).
20.
A. N.
Slavin
and
V. S.
Tiberkevich
, “
Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts
,”
Phys. Rev. B
72
,
092407
(
2005
).
21.
N.
Locatelli
,
A.
Hamadeh
,
F.
Abreu Araujo
 et al, “
Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators
,”
Sci. Rep.
5
,
17039
(
2015
).
22.
A.
Hrabec
,
V.
Křižáková
,
S.
Pizzini
 et al, “
Velocity enhancement by synchronization of magnetic domain walls
,”
Phys. Rev. Lett.
120
,
227204
(
2018
).
23.
S.
Kaka
,
M. R.
Pufall
,
W. H.
Rippard
 et al, “
Mutual phase-locking of microwave spin torque nano-oscillators
,”
Nature
437
,
389
392
(
2005
).
24.
J.
Grollier
,
V.
Cros
, and
A.
Fert
, “
Synchronization of spin-transfer oscillators driven by stimulated microwave currents
,”
Phys. Rev. B
73
,
060409
(
2006
).
25.
D.
Vodenicarevic
,
N.
Locatelli
,
F.
Abreu Araujo
,
J.
Grollier
, and
D.
Querlioz
, “
A nanotechnology-ready computing scheme based on a weakly coupled oscillator network
,”
Sci. Rep.
7
,
44772
(
2017
).
26.
D.
Marković
,
A.
Mizrahi
,
D.
Querlioz
, and
J.
Grollier
, “
Physics for neuromorphic computing
,”
Nat. Rev. Phys.
2
,
499
510
(
2020
).
27.
M.
Romera
,
P.
Talatchian
,
S.
Tsunegi
 et al, “
Vowel recognition with four coupled spin-torque nano-oscillators
,”
Nature
563
,
230
234
(
2018
).
28.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
 et al, “
Neuromorphic computing with nanoscale spintronic oscillators
,”
Nature
547
,
428
431
(
2017
).
29.
D.
Marković
,
N.
Leroux
,
M.
Riou
 et al, “
Reservoir computing with the frequency, phase, and amplitude of spin-torque nano-oscillators
,”
Appl. Phys. Lett.
114
,
012409
(
2019
).
30.
M.
Zahedinejad
,
A. A.
Awad
,
S.
Muralidhar
 et al, “
Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing
,”
Nat. Nanotechnol.
15
,
47
52
(
2020
).
31.
A. N.
Bogdanov
and
U. B.
Rößler
, “
Chiral symmetry breaking in magnetic thin films and multilayers
,”
Phys. Rev. Lett.
87
,
37203
(
2001
).
32.
Z.
Luo
,
T. P.
Dao
,
A.
Hrabec
 et al, “
Chirally coupled nanomagnets
,”
Science
363
,
1435
1439
(
2019
).
33.
S. H.
Skjærvø
,
C. H.
Marrows
,
R. L.
Stamps
, and
L. J.
Heyderman
, “
Advances in artificial spin ice
,”
Nat. Rev. Phys.
2
,
13
28
(
2020
).
34.
T. P.
Dao
,
M.
Müller
,
Z.
Luo
 et al, “
Chiral domain wall injector driven by spin–orbit torques
,”
Nano Lett.
19
,
5930
5937
(
2019
).
35.
Z.
Luo
,
A.
Hrabec
,
T. P.
Dao
 et al, “
Current-driven magnetic domain-wall logic
,”
Nature
579
,
214
218
(
2020
).
36.
A.
Hrabec
,
Z.
Luo
,
L. J.
Heyderman
, and
P.
Gambardella
, “
Synthetic chiral magnets promoted by the Dzyaloshinskii-Moriya interaction
,”
Appl. Phys. Lett.
117
,
130503
(
2020
).
37.
Z.
Luo
,
S.
Schären
,
A.
Hrabec
 et al, “
Field-and current-driven magnetic domain-wall inverter and diode
,”
Phys. Rev. Appl.
15
,
034077
(
2021
).
38.
L.
Herrera Diez
,
Y. T.
Liu
,
D. A.
Gilbert
 et al, “
Nonvolatile ionic modification of the Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. Appl.
12
,
034005
(
2019
).
39.
M.
Urbánek
,
L.
Flajšman
,
V.
Křiáková
 et al, “
Research update: Focused ion beam direct writing of magnetic patterns with controlled structural and magnetic properties
,”
APL Mater.
6
,
060701
(
2018
).
40.
E.
Albisetti
,
D.
Petti
,
M.
Pancaldi
 et al, “
Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography
,”
Nat. Nanotechnol.
11
,
545
551
(
2016
).
41.
U.
Bauer
,
S.
Emori
, and
G. S. D.
Beach
, “
Voltage-controlled domain wall traps in ferromagnetic nanowires
,”
Nat. Nanotechnol.
8
,
411
416
(
2013
).
42.
A.
Manchon
,
C.
Ducruet
,
L.
Lombard
 et al, “
Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers
,”
J. Appl. Phys.
104
,
043914
(
2008
).
43.
M.
Belmeguenai
,
J. P.
Adam
,
Y.
Roussigné
 et al, “
Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy
,”
Phys. Rev. B
91
,
180405
(
2015
).
44.
S.
Rohart
and
A.
Thiaville
, “
Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. B
88
,
184422
(
2013
).
45.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
 et al, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
46.
G.
Siracusano
,
R.
Tomasello
,
A.
Giordano
 et al, “
Magnetic radial vortex stabilization and efficient manipulation driven by the Dzyaloshinskii-Moriya interaction and spin-transfer torque
,”
Phys. Rev. Lett.
117
,
087204
(
2016
).
47.
K. Y.
Guslienko
, “
Magnetic vortex state stability, reversal and dynamics in restricted geometries
,”
J. Nanosci. Nanotechnol.
8
,
2745
2760
(
2020
).
48.
A. V.
Khvalkovskiy
,
J.
Grollier
,
A.
Dussaux
,
K. A.
Zvezdin
, and
V.
Cros
, “
Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations
,”
Phys. Rev. B
80
,
140401
(
2009
).
49.
A.
Dussaux
,
E.
Grimaldi
,
B.
Rache Salles
 et al, “
Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer
,”
Appl. Phys. Lett.
105
,
022404
(
2014
).
50.
Q.
Mistral
,
M.
Van Kampen
,
G.
Hrkac
 et al, “
Current-driven vortex oscillations in metallic nanocontacts
,”
Phys. Rev. Lett.
100
,
257201
(
2008
).
51.
M. R.
Pufall
,
W. H.
Rippard
,
S. E.
Russek
,
S.
Kaka
, and
J. A.
Katine
, “
Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators
,”
Phys. Rev. Lett.
97
,
087206
(
2006
).
52.
S.
Wintz
,
V.
Tiberkevich
,
M.
Weigand
 et al, “
Magnetic vortex cores as tunable spin-wave emitters
,”
Nat. Nanotechnol.
11
,
948
953
(
2016
).
53.
S.
Mayr
,
L.
Flajšman
,
S.
Finizio
 et al, “
Spin-wave emission from vortex cores under static magnetic bias fields
,”
Nano Lett.
21
(
4
),
1584
1590
(
2021
).
54.
Z.
Zeng
, “
Dataset for synchronization of chiral vortex nano-oscillators
,”
Zenodo
.
You do not currently have access to this content.