In this work, we demonstrate a triggered single-photon source operating at the telecom C-band with photon extraction efficiency exceeding any reported values in this range. The non-classical light emission with low probability of the multiphoton events is realized with single InAs quantum dots (QDs) grown by molecular beam epitaxy and embedded directly in an InP matrix. Low QD spatial density on the order of 5 × 108 cm−2 to ∼2 × 109 cm−2 and symmetric shape of these nanostructures together with spectral range of emission make them relevant for quantum communication applications. The engineering of extraction efficiency is realized by combining a bottom distributed Bragg reflector consisting of 25 pairs of InP/In0.53Ga0.37Al0.1 As layers and cylindrical photonic confinement structures. Realization of such a technologically non-demanding approach even in a non-deterministic fashion results in photon extraction efficiency of (13.3 ± 2) % into 0.4 numerical aperture detection optics at approximately 1560 nm emission wavelength, i.e., close to the center of the telecom C-band.

1.
Anderson
,
M.
,
Müller
,
T.
,
Huwer
,
J.
,
Skiba-Szymańska
,
J.
,
Krysa
,
A. B.
,
Stevenson
,
R. M.
,
Heffernan
,
J.
,
Ritchie
,
D. A.
, and
Shields
,
A. J.
, “
Quantum teleportation using highly coherent emission from telecom C-band quantum dots
,”
npj Quantum Inf.
6
,
14
(
2020
).
2.
Arakawa
,
Y.
and
Holmes
,
M. J.
, “
Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview
,”
Appl. Phys. Rev.
7
,
021309
(
2020
).
3.
Barnes
,
W. L.
,
Björk
,
G.
,
Gérard
,
J. M.
,
Jonsson
,
P.
,
Wasey
,
J. A. E.
,
Worthing
,
P. T.
, and
Zwiller
,
V.
, “
Solid-state single photon sources: Light collection strategies
,”
Eur. Phys. J. D
18
,
197
210
(
2002
).
4.
Benyoucef
,
M.
,
Yacob
,
M.
,
Reithmaier
,
J. P.
,
Kettler
,
J.
, and
Michler
,
P.
, “
Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots
,”
Appl. Phys. Lett.
103
,
162101
(
2013
).
5.
Birowosuto
,
M. D.
,
Sumikura
,
H.
,
Matsuo
,
S.
,
Taniyama
,
H.
,
van Veldhoven
,
P. J.
,
Nötzel
,
R.
, and
Notomi
,
M.
, “
Fast Purcell-enhanced single photon source in 1550-nm telecom band from a resonant quantum dot-cavity coupling
,”
Sci. Rep.
2
,
321
(
2012
).
6.
Cao
,
X.
,
Zopf
,
M.
, and
Ding
,
F.
, “
Telecom wavelength single photon sources
,”
J. Semicond.
40
,
071901
(
2019
).
7.
Claudon
,
J.
,
Bleuse
,
J.
,
Malik
,
N. S.
,
Bazin
,
M.
,
Jaffrennou
,
P.
,
Gregersen
,
N.
,
Sauvan
,
C.
,
Lalanne
,
P.
, and
Gérard
,
J.-M.
, “
A highly efficient single-photon source based on a quantum dot in a photonic nanowire
,”
Nat. Photonics
4
,
174
177
(
2010
).
8.
Ding
,
X.
,
He
,
Y.
,
Duan
,
Z.-C.
,
Gregersen
,
N.
,
Chen
,
M.-C.
,
Unsleber
,
S.
,
Maier
,
S.
,
Schneider
,
C.
,
Kamp
,
M.
,
Höfling
,
S.
,
Lu
,
C.-Y.
, and
Pan
,
J.-W.
, “
On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar
,”
Phys. Rev. Lett.
116
,
20401
(
2016
).
9.
Gazzano
,
O.
,
Michaelis de Vasconcellos
,
S.
,
Arnold
,
C.
,
Nowak
,
A.
,
Galopin
,
E.
,
Sagnes
,
I.
,
Lanco
,
L.
,
Lemaître
,
A.
, and
Senellart
,
P.
, “
Bright solid-state sources of indistinguishable single photons
,”
Nat. Commun.
4
,
1425
(
2013
).
10.
Gisin
,
N.
and
Thew
,
R.
, “
Quantum Communication
,”
Nat. Photonics
1
,
165
171
(
2007
).
11.
Gschrey
,
M.
,
Thoma
,
A.
,
Schnauber
,
P.
,
Seifried
,
M.
,
Schmidt
,
R.
,
Wohlfeil
,
B.
,
Krüger
,
L.
,
Schulze
,
J.-H.
,
Heindel
,
T.
,
Burger
,
S.
,
Schmidt
,
F.
,
Strittmatter
,
A.
,
Rodt
,
S.
, and
Reitzenstein
,
S.
, “
Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography
,”
Nat. Commun.
6
,
7662
(
2015
).
12.
Heindel
,
T.
,
Schneider
,
C.
,
Lermer
,
M.
,
Kwon
,
S. H.
,
Braun
,
T.
,
Reitzenstein
,
S.
,
Höfling
,
S.
,
Kamp
,
M.
, and
Forchel
,
A.
, “
Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency
,”
Appl. Phys. Lett.
96
,
011107
(
2010
).
13.
Huber
,
D.
,
Reindl
,
M.
,
Covre Da Silva
,
S. F.
,
Schimpf
,
C.
,
Martín-Sánchez
,
J.
,
Huang
,
H.
,
Piredda
,
G.
,
Edlinger
,
J.
,
Rastelli
,
A.
, and
Trotta
,
R.
, “
Strain-tunable GaAs quantum dot: A nearly dephasing-free source of entangled photon pairs on demand
,”
Phys. Rev. Lett.
121
,
33902
(
2018
).
14.
Kettler
,
J.
,
Paul
,
M.
,
Olbrich
,
F.
,
Zeuner
,
K.
,
Jetter
,
M.
,
Michler
,
P.
,
Florian
,
M.
,
Carmesin
,
C.
, and
Jahnke
,
F.
, “
Neutral and charged biexciton-exciton cascade in near-telecom-wavelength quantum dots
,”
Phys. Rev. B
94
,
045303
(
2016
).
15.
Knill
,
E.
,
Laflamme
,
R. G. J.
, and
Milburn
,
G. J.
, “
A scheme for efficient quantum computation with linear optics
,”
Nature
409
,
46
52
(
2001
).
16.
Kors
,
A.
,
Reithmaier
,
J. P.
, and
Benyoucef
,
M.
, “
Telecom wavelength single quantum dots with very small excitonic fine-structure splitting
,”
Appl. Phys. Lett.
112
,
172102
(
2018
).
17.
Lodahl
,
P.
, “
Quantum-dot based photonic quantum networks
,”
Quantum Sci. Technol.
3
,
013001
(
2018
).
18.
Michler
,
P.
(Eds),
Quantum Dots for Quantum Information Technologies
(
Springer International Publishing
,
2017
).
19.
Miyazawa
,
T.
,
Takemoto
,
K.
,
Nambu
,
Y.
,
Miki
,
S.
,
Yamashita
,
T.
,
Terai
,
H.
,
Fujiwara
,
M.
,
Sasaki
,
M.
,
Sakuma
,
Y.
,
Takatsu
,
M.
,
Yamamoto
,
T.
, and
Arakawa
,
Y.
, “
Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities
,”
Appl. Phys. Lett.
109
,
132106
(
2016
).
20.
Mrowiński
,
P.
and
Sęk
,
G.
, “
Modelling the enhancement of spectrally broadband extraction efficiency of emission from single InAs/InP quantum dots at telecommunication wavelengths
,”
Physica B
562
,
141
147
(
2019
).
21.
Musiał
,
A.
,
Podemski
,
P.
,
Sęk
,
G.
,
Kaczmarkiewicz
,
P.
,
Andrzejewski
,
J.
,
Machnikowski
,
P.
,
Misiewicz
,
J.
,
Hein
,
S.
,
Somers
,
A.
,
Höfling
,
S.
,
Reithmaier
,
J. P.
, and
Forchel
,
A.
, “
Height-driven linear polarization of the surface emission from quantum dashes
,”
Semicond. Sci. Technol.
27
,
105022
(
2012
).
22.
Musiał
,
A.
,
Holewa
,
P.
,
Wyborski
,
P.
,
Syperek
,
M.
,
Kors
,
A.
,
Reithmaier
,
J. P.
,
Sęk
,
G.
, and
Benyoucef
,
M.
, “
High-purity triggered single-photon emission from symmetric single InAs/InP quantum dots around the telecom C-band window
,”
Adv. Quantum Technol.
3
,
1900082
(
2020
).
23.
Müller
,
T.
,
Skiba-Szymanska
,
J.
,
Krysa
,
A. B.
,
Huwer
,
J.
,
Felle
,
M.
,
Anderson
,
M.
,
Stevenson
,
R. M.
,
Heffernan
,
J.
,
Ritchie
,
D. A.
, and
Shields
,
A. J.
, “
A quantum light-emitting diode for the standard telecom window around 1550 nm
,”
Nat. Commun.
9
,
862
(
2018
).
24.
Narvaez
,
G. A.
,
Bester
,
G.
,
Franceschetti
,
A.
, and
Zunger
,
A.
, “
Excitonic exchange effects on the radiative decay time of monoexcitons and biexcitons in quantum dots
,”
Phys. Rev. B
74
,
205422
(
2006
).
25.
Reimer
,
M. E.
,
Bulgarini
,
G.
,
Fognini
,
A.
,
Heeres
,
R. W.
,
Witek
,
B. J.
,
Versteegh
,
M. A. M.
,
Rubino
,
A.
,
Braun
,
T.
,
Kamp
,
M.
,
Höfling
,
S.
,
Dalacu
,
D.
,
Lapointe
,
J.
,
Poole
,
P. J.
, and
Zwiller
,
V.
, “
Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire
,”
Phys. Rev. B
93
,
195316
(
2016
).
26.
Rodt
,
S.
,
Schneider
,
P.-I.
,
Zschiedrich
,
L.
,
Heindel
,
T.
,
Bounouar
,
S.
,
Kantner
,
M.
,
Koprucki
,
T.
,
Bandelow
,
U.
,
Burger
,
S.
, and
Reitzenstein
,
S.
, “
Deterministic quantum devices for optical quantum communication
,” in
Semiconductor Nanophotonics: Materials, Models, and Devices
, edited by
M.
Kneissl
,
A.
Knorr
,
S.
Reitzenstein
, and
A.
Hoffmann
(
Springer International Publishing
,
2020
), pp. 285–359.
27.
Rudno-Rudziński
,
W.
,
Burakowski
,
M.
,
Reithmaier
,
J. P.
,
Musiał
,
A.
, and
Benyoucef
,
M.
, “
Magneto-optical characterization of trions in symmetric InP-based quantum dots for quantum communication applications
,” arXiv:2101.09739 (
2021
).
28.
Sartison
,
M.
,
Engel
,
L.
,
Kolatschek
,
S.
,
Olbrich
,
F.
,
Nawrath
,
C.
,
Hepp
,
S.
,
Jetter
,
M.
,
Michler
,
P.
, and
Portalupi
,
S. L.
, “
Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses
,”
Appl. Phys. Lett.
113
,
032103
(
2018
).
29.
Schlehahn
,
A.
,
Gaafar
,
M.
,
Vaupel
,
M.
,
Gschrey
,
M.
,
Schnauber
,
P.
,
Schulze
,
J.-H.
,
Rodt
,
S.
,
Strittmatter
,
A.
,
Stolz
,
W.
,
Rahimi-Iman
,
A.
,
Heindel
,
T.
,
Koch
,
M.
, and
Reitzenstein
,
S.
, “
Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser
,”
Appl. Phys. Lett.
107
,
041105
(
2015
).
30.
Schneider
,
P.-I.
,
Srocka
,
N.
,
Rodt
,
S.
,
Zschiedrich
,
L.
,
Reitzenstein
,
S.
, and
Burger
,
S.
, “
Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber
,”
Opt. Express
26
,
8479
8492
(
2018
).
31.
Schweickert
,
L.
,
Jöns
,
K. D.
,
Zeuner
,
K. D.
,
Covre da Silva
,
S. F.
,
Huang
,
H.
,
Lettner
,
T.
,
Reindl
,
M.
,
Zichi
,
J.
,
Trotta
,
R.
,
Rastelli
,
A.
, and
Zwiller
,
V.
, “
On-demand generation of background-free single photons from a solid-state source
,”
Appl. Phys. Lett.
112
,
093106
(
2018
).
32.
Semenova
,
E. S.
,
Hostein
,
R.
,
Patriarche
,
G.
,
Mauguin
,
O.
,
Largeau
,
L.
,
Robert-Philip
,
I.
,
Beveratos
,
A.
, and
Lemaîtrea
,
A.
, “
Metamorphic approach to single quantum dot emission at 1.55 μm on GaAs substrate
,”
J. Appl. Phys.
103
,
103533
(
2008
).
33.
Somaschi
,
N.
,
Giesz
,
V.
,
De Santis
,
L.
,
Loredo
,
J. C.
,
Almeida
,
M. P.
,
Hornecker
,
G.
,
Portalupi
,
S. L.
,
Grange
,
T.
,
Antón
,
C.
,
Demory
,
J.
,
Gómez
,
C.
,
Sagnes
,
I.
,
Lanzillotti-Kimura
,
N. D.
,
Lemaítre
,
A.
,
Auffeves
,
A.
,
White
,
A. G.
,
Lanco
,
L.
, and
Senellart
,
P.
, “
Near-optimal single-photon sources in the solid state
,”
Nat. Photonics
10
,
340
345
(
2016
).
34.
Song
,
H.-Z.
,
Takemoto
,
K.
,
Miyazawa
,
T.
,
Takatsu
,
M.
,
Iwamoto
,
S.
,
Yamamoto
,
T.
, and
Arakawa
,
Y.
, “
Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots
,”
Opt. Lett.
38
(
17
),
3241
3244
(
2013
).
35.
Suffczyński
,
J.
,
Kazimierczuk
,
T.
,
Goryca
,
M.
,
Piechal
,
B.
,
Trajnerowicz
,
A.
,
Kowalik
,
K.
,
Kossacki
,
P.
,
Golnik
,
A.
,
Korona
,
K. P.
,
Nawrocki
,
M.
,
Gaj
,
J. A.
, and
Karczewski
,
G.
, “
Excitation mechanisms of individual CdTe/ZnTe quantum dots studied by photon correlation spectroscopy
,”
Phys. Rev. B
74
,
085319
(
2006
).
36.
Takemoto
,
K.
,
Takatsu
,
M.
,
Hirose
,
S.
, and
Yokoyama
,
N.
, “
An optical horn structure for single-photon source using quantum dots at telecommunication wavelength
,”
J. Appl. Phys.
101
,
081720
(
2007
).
37.
Takemoto
,
K.
,
Takemoto
,
K.
,
Nambu
,
Y.
,
Miyazawa
,
T.
,
Wakui
,
K.
,
Hirose
,
S.
,
Usuki
,
T.
,
Takatsu
,
M.
,
Yokoyama
,
N.
,
Yoshino
,
K.
, and
Tomita
,
A.
, “
Transmission experiment of quantum keys over 50 km using high-performance quantum-dot single-photon source at 1.5 μm wavelength
,”
Appl. Phys. Express
3
(
9
),
092802
(
2010
).
38.
Takemoto
,
K.
,
Nambu
,
Y.
,
Miyazawa
,
T.
,
Sakuma
,
Y.
,
Yamamoto
,
T.
,
Yorozu
,
S.
, and
Arakawa
,
Y.
, “
Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors
,”
Sci. Rep.
5
,
14383
(
2015
).
39.
Unsleber
,
S.
,
He
,
Y.-M.
,
Gerhardt
,
S.
,
Maier
,
S.
,
Lu
,
C.-Y.
,
Pan
,
J.-W.
,
Gregersen
,
N.
,
Kamp
,
M.
,
Schneider
,
C.
, and
Höfling
,
S.
, “
Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency
,”
Opt. Express
24
(
8
),
8539
8546
(
2016
).
40.
Wimmer
,
M.
,
Nair
,
S. V.
, and
Shumway
,
J.
, “
Biexciton recombination rates in self-assembled quantum dots
,”
Phys. Rev. B
73
,
165305
(
2006
).
41.
Yacob
,
M.
,
Reithmaier
,
J. P.
, and
Benyoucef
,
M.
, “
Low-density InP-based quantum dots emitting around the 1.5 μm telecom wavelength range
,”
Appl. Phys. Lett.
104
,
022113
(
2014
).
You do not currently have access to this content.