Two-dimensional (2D) GaInS3 nanosheets are found to exhibit thermal and structural stabilities, good oxidation resistance, and tunable and layer-dependent electronic properties from first-principles calculations. Remarkably, the nanosheets with arbitrary thickness possess robust in-plane piezoelectricity without the odd-even effect commonly observed in other 2D piezoelectric materials, which is attributed to the retention of noncentrosymmetry resulting from their homogeneous and direct stacking patterns. The piezoelectric stress coefficient e113D of the nanosheets is about 0.23 C/m2, almost independent of the numbers of atomic layers of 2D GaInS3. The stability in piezoelectricity and the high carrier mobility of 2D GaInS3 nanosheets could endow them with promising application prospects in nanoelectronic and nanoelectromechanical devices.

1.
J.
Zhang
and
S. A.
Meguid
,
Semicond. Sci. Technol.
32
(
4
),
043006
(
2017
).
2.
M. B.
Ghasemian
,
T.
Daeneke
,
Z.
Shahrbabaki
,
J.
Yang
, and
K.
Kalantar-Zadeh
,
Nanoscale
12
(
5
),
2875
2901
(
2020
).
3.
W.
Wu
,
L.
Wang
,
Y.
Li
,
F.
Zhang
,
L.
Lin
,
S.
Niu
,
D.
Chenet
,
X.
Zhang
,
Y.
Hao
,
T. F.
Heinz
,
J.
Hone
, and
Z. L.
Wang
,
Nature
514
(
7523
),
470
474
(
2014
).
4.
H.
Zhu
,
Y.
Wang
,
J.
Xiao
,
M.
Liu
,
S.
Xiong
,
Z. J.
Wong
,
Z.
Ye
,
Y.
Ye
,
X.
Yin
, and
X.
Zhang
,
Nat. Nanotechnol.
10
(
2
),
151
155
(
2015
).
5.
M. M.
Alyörük
,
Y.
Aierken
,
D.
Çakır
,
F. M.
Peeters
, and
C.
Sevik
,
J. Phys. Chem. C
119
(
40
),
23231
23237
(
2015
).
6.
M. N.
Blonsky
,
H. L.
Zhuang
,
A. K.
Singh
, and
R. G.
Hennig
,
ACS Nano
9
(
10
),
9885
9891
(
2015
).
7.
K.-A. N.
Duerloo
,
M. T.
Ong
, and
E. J.
Reed
,
J. Phys. Chem. Lett.
3
(
19
),
2871
2876
(
2012
).
8.
R.
Fei
,
W.
Li
,
J.
Li
, and
L.
Yang
,
Appl. Phys. Lett.
107
(
17
),
173104
(
2015
).
9.
W.
Li
and
J.
Li
,
Nano Res.
8
(
12
),
3796
3802
(
2015
).
10.
R.
Gao
and
Y.
Gao
,
Phys. Status Solidi (RRL)–R
11
(
3
),
1600412
(
2017
).
11.
H.
Yin
,
J.
Gao
,
G.-P.
Zheng
,
Y.
Wang
, and
Y.
Ma
,
J. Phys. Chem. C
121
(
45
),
25576
25584
(
2017
).
12.
K. H.
Michel
and
B.
Verberck
,
Phys. Rev. B
83
,
115328
(
2011
).
13.
F.
Xue
,
J.
Zhang
,
W.
Hu
,
W.-T.
Hsu
,
A.
Han
,
S.-F.
Leung
,
J.-K.
Huang
,
Y.
Wan
,
S.
Liu
,
J.
Zhang
,
J.-H.
He
,
W.-H.
Chang
,
Z. L.
Wang
,
X.
Zhang
, and
L.-J.
Li
,
ACS Nano
12
(
5
),
4976
4983
(
2018
).
14.
G. G.
Guseinov
,
I. R.
Amiraslanov
, and
A. S.
Kuliev
,
Kristallografiya
32
(
1
),
140
141
(
1987
).
15.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
16.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
17.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
18.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
19.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
20.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
21.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
(
18
),
8207
8215
(
2003
).
22.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
23.
L.
Chaput
,
A.
Togo
,
I.
Tanaka
, and
G.
Hug
,
Phys. Rev. B
84
(
9
),
094302
(
2011
).
24.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
(
4
),
2635
2643
(
1992
).
25.
S.
Jiang
,
J.
Li
,
W.
Chen
,
H.
Yin
,
G.-P.
Zheng
, and
Y.
Wang
,
Nanoscale
12
(
10
),
5888
5897
(
2020
).
26.
W.
Zhou
,
S.
Guo
,
S.
Zhang
,
Z.
Zhu
,
X.
Song
,
T.
Niu
,
K.
Zhang
,
X.
Liu
,
Y.
Zou
, and
H.
Zeng
,
Nanoscale
10
(
7
),
3350
3355
(
2018
).
27.
U. M.
Özgür
,
D.
Hofstetter
, and
H.
Morkoç
,
Proc. IEEE
98
,
1255
1268
(
2010
).
28.
Z.
Wu
,
W.
Jie
,
Z.
Yang
, and
J.
Hao
,
Mater. Today Nano
12
,
100092
(
2020
).
29.
C.
Gong
,
J.
Chu
,
C.
Yin
,
C.
Yan
,
X.
Hu
,
S.
Qian
,
Y.
Hu
,
K.
Hu
,
J.
Huang
,
H.
Wang
,
Y.
Wang
,
P.
Wangyang
,
T.
Lei
,
L.
Dai
,
C.
Wu
,
B.
Chen
,
C.
Li
,
M.
Liao
,
T.
Zhai
, and
J.
Xiong
,
Adv. Mater.
31
(
36
),
1903580
(
2019
).
30.
S.
Zhang
,
Z.
Yan
,
Y.
Li
,
Z.
Chen
, and
H.
Zeng
,
Angew. Chem. Int. Ed.
54
(
10
),
3112
3115
(
2015
).
31.
B.
Wang
,
X.
Zhang
,
Y.
Zhang
,
S.
Yuan
,
Y.
Guo
,
S.
Dong
, and
J.
Wang
,
Mater. Horiz.
7
(
6
),
1623
1630
(
2020
).
32.
H.
Yin
,
C.
Liu
,
G.-P.
Zheng
,
Y.
Wang
, and
F.
Ren
,
Appl. Phys. Lett.
114
(
19
),
192903
(
2019
).
33.
C.
Liu
,
B.
Wang
,
G.
Jia
,
P.
Liu
,
H.
Yin
,
S.
Guan
, and
Z.
Cheng
,
Appl. Phys. Lett.
118
(
7
),
072902
(
2021
).
34.
V.
Tran
,
R.
Soklaski
,
Y.
Liang
, and
L.
Yang
,
Phys. Rev. B
89
(
23
),
235319
(
2014
).
35.
B.
Wang
,
X.
Niu
,
Y.
Ouyang
,
Q.
Zhou
, and
J.
Wang
,
J. Phys. Chem. Lett.
9
(
3
),
487
490
(
2018
).
36.
J. F.
Nye
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
(
Oxford University Press
,
New York
,
1985
).
37.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
(
3
),
1651
1654
(
1993
).
38.
D.
Vanderbilt
,
J. Phys. Chem. Solids
61
(
2
),
147
151
(
2000
).
39.
F.
Mouhat
and
F.-X.
Coudert
,
Phys. Rev. B
90
(
22
),
224104
(
2014
).
40.
R.
Bechmann
,
Phys. Rev.
110
(
5
),
1060
1061
(
1958
).
41.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
(
1
),
72
80
(
1950
).
42.
H.
Lang
,
S.
Zhang
, and
Z.
Liu
,
Phys. Rev. B
94
(
23
),
235306
(
2016
).

Supplementary Material

You do not currently have access to this content.