The study of hexagonal silicon polytypes attracts special attention due to their unique physical properties compared to the traditional cubic phase of Si. Thus, for some hexagonal phases, a significant improvement in the emission properties has been demonstrated. In this work, the luminescent properties of SiO2/Si structures irradiated with Kr+ ions at different doses and annealed at 800 °C have been systematically investigated. For such structures, a photoluminescence line at ∼ 1240 nm is observed and associated with the formation of hexagonal 9R-Si phase inclusions. It is found that the variation in the thickness of oxide film and the relative position of ion distribution profile and film/substrate interface leads to a regular change in the luminescence intensity. The nature of the observed dependencies is discussed as related mainly to the interplay between the factors contributing to the formation of 9R-Si inclusions and the generation of radiation defects in the Si substrate—centers of nonradiative recombination. The revealed regularities suggest optimal ion irradiation conditions for synthesis of optically active 9R-Si phase in diamond-like silicon.

1.
J. D.
Joannopoulos
and
M. L.
Cohen
,
Phys. Rev. B
7
(
6
),
2644
(
1973
).
2.
H.
Cerva
,
J. Mater. Res.
6
,
2324
(
1991
).
3.
T. H.
Kim
and
J. Y.
Lee
,
Mater. Lett.
27
,
275
(
1996
).
4.
Y.
Zhang
,
Z.
Iqbal
,
S.
Vijayalakshmi
, and
H.
Grebel
,
Appl. Phys. Lett.
75
,
2758
(
1999
).
5.
J.
Bandet
,
B.
Despax
, and
M.
Caumont
,
J. Phys. D: Appl. Phys.
35
,
234
(
2002
).
6.
X.
Liu
and
D.
Wang
,
Nano Res.
2
,
575
(
2009
).
7.
A.
Fontcuberta I Morral
,
J.
Arbiol
,
J. D.
Prades
,
A.
Cirera
, and
J. R.
Morante
,
Adv. Mater.
19
,
1347
(
2007
).
8.
J.
Tang
,
J. L.
Maurice
,
F.
Fossard
,
I.
Florea
,
W.
Chen
,
E. V.
Johnson
,
M.
Foldyna
,
L.
Yu
, and
P. R.
Cabarrocas
,
Nanoscale
9
(
24
),
8113
(
2017
).
9.
F.
Fabbri
,
E.
Rotunno
,
L.
Lazzarini
,
D.
Cavalcoli
,
A.
Castaldini
,
N.
Fukata
,
K.
Sato
,
G.
Salviati
, and
A.
Cavallini
,
Nano Lett.
13
(
12
),
5900
(
2013
).
10.
F.
Fabbri
,
E.
Rotunno
,
L.
Lazzarini
,
N.
Fukata
, and
G.
Salviati
,
Sci. Rep.
4
,
3603
(
2015
).
11.
H. M.
Jennings
and
M. H.
Richman
,
Science
193
(
4259
),
1242
(
1976
).
12.
D. S.
Korolev
,
A. A.
Nikolskaya
,
N. O.
Krivulin
,
A. I.
Belov
,
A. N.
Mikhaylov
,
D. A.
Pavlov
,
D. I.
Tetelbaum
,
N. A.
Sobolev
, and
M.
Kumar
,
Tech. Phys. Lett.
43
(
8
),
767
(
2017
).
13.
A. A.
Nikolskaya
,
D. S.
Korolev
,
A. N.
Mikhaylov
,
A. I.
Belov
,
A. A.
Sushkov
,
N. O.
Krivulin
,
K. R.
Muhamatchin
,
A. A.
Elizarova
,
M. O.
Marychev
,
A. A.
Konakov
,
D. I.
Tetelbaum
, and
D. A.
Pavlov
,
Appl. Phys. Lett.
113
,
182103
(
2018
).
14.
A. A.
Nikolskaya
,
D. S.
Korolev
,
A. N.
Mikhaylov
,
A. A.
Konakov
,
A. I.
Belov
,
M. O.
Marychev
,
R. I.
Murtazin
,
D. A.
Pavlov
, and
D. I.
Tetelbaum
,
Surf. Coat. Technol.
386
,
125496
(
2020
).
15.
See http://www.srim.org for “
SRIM (The Stopping and Range of Ions in Matter)
.”
16.
P. K.
Giri
,
Semicond. Sci. Technol.
20
(
6
),
638
(
2005
).
17.
A. A.
Nikolskaya
,
D. S.
Korolev
,
A. A.
Konakov
,
A. N.
Mikhaylov
,
A. I.
Belov
,
M. O.
Marychev
,
R. I.
Murtazin
,
D. A.
Pavlov
, and
D. I.
Tetelbaum
,
J. Phys.: Conf. Ser.
1695
,
012031
(
2020
).
You do not currently have access to this content.