II–VI semiconductors are used in numerous electro-optical applications. For example, CdTe-based solar technology is cost competitive with other electricity generation sources, yet there is still significant room to improve. Carrier lifetime has historically been well below the radiative recombination limit. Lifetimes reaching beyond 100 ns can significantly enhance performance and enable novel device structures. Here, double heterostructures (DHs) with passivated interfaces demonstrate lifetimes exceeding 1 μs, yet this appears only for CdSeTe and not for CdTe DHs. We compare the passivation mechanisms in CdTe and CdSeTe DHs. CdSeTe lifetimes on the order of 1 μs correspond to a combination of superior intragrain lifetime, extremely low grain boundary recombination and greater Te4+ interfacial presence compared to CdTe.

1.
D.
Feldman
and
R.
Margolis
, “
Solar industry update
,” Report No. NREL/PR-6A20-77772 (
2020
).
3.
Handbook of Photovoltaic Science and Engineering
, edited by
A.
Luque
and
S.
Hegedus
(
Wiley
,
2011
), Chaps. 13 and 14.
4.
M.
Liu
,
M.
Johnston
, and
H.
Snaith
, “
Efficient planar heterojunction perovskite solar cells by vapor deposition
,”
Nature
501
(
7467
),
395
398
(
2013
).
5.
P.
Antunez
,
D.
Bishop
,
Y.
Luo
, and
R.
Haight
, “
Efficient kesterite solar cells with high open-circuit voltage for applications in powering distributed devices
,”
Nat. Energy
2
(
11
),
884
890
(
2017
).
6.
L.
Kranz
,
C.
Gretener
,
J.
Perrenoud
 et al., “
Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil
,”
Nat. Commun.
4
(
1
),
2306
(
2013
).
7.
H.
Mahabaduge
,
W. L.
Rance
,
J. M.
Burst
 et al., “
High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates
,”
Appl. Phys. Lett.
106
(
13
),
133501
(
2015
).
8.
M. O.
Reese
,
S.
Glynn
,
M. D.
Kempe
,
D. L.
McGott
,
M. S.
Dabney
,
T. M.
Barnes
,
S.
Booth
,
D.
Feldman
, and
N. M.
Haygel
, “
Increasing markets and decreasing package weight for high-specific-power photovoltaics
,”
Nat. Energy
3
(
11
),
1002
1012
(
2018
).
9.
D.
Feldman
and
R.
Margolis
, “
Q4 2019/Q1 2020 solar industry update
,”
Report No. NREL/PR-6A20-77010
(
2020
).
10.
G. M.
Wilson
,
M.
Al-Jassim
,
W. K.
Metzger
 et al., “
The 2020 photovoltaic technologies roadmap
,”
J. Phys. D
53
,
493001
(
2020
).
11.
J. M.
Burst
,
J. N.
Duenow
,
D. S.
Albin
 et al., “
CdTe solar cells with open-circuit voltage breaking the 1 V barrier
,”
Nat. Energy
1
,
16015
(
2016
).
12.
J.
Major
,
R.
Treharne
,
L.
Phillips
, and
K.
Durose
, “
A low-cost non-toxic post-growth activation step for CdTe solar cells
,”
Nature
511
(
7509
),
334
337
(
2014
).
13.
W. K.
Metzger
,
D.
Albin
,
D.
Levi
,
P.
Sheldon
,
X.
Li
,
B. M.
Keyes
, and
R. K.
Ahrenkiel
, “
Time-resolved photoluminescence studies of CdTe solar cells
,”
J. Appl. Phys.
94
(
5
),
3549
3555
(
2003
).
14.
M.
Amarasinghe
,
E.
Colegrove
,
J.
Moseley
 et al., “
Obtaining large columnar CdTe grains and long lifetime on nanocrystalline CdSe, MgZnO, or CdS layers
,”
Adv. Energy Mater.
8
,
1702666
(
2018
).
15.
D.
Krasikov
and
I.
Sankin
, “
Defect interactions and the role of complexes in the CdTe solar cell absorber
,”
J. Mater. Chem. A
5
,
3503
3513
(
2017
).
16.
B. J.
Stanbery
, “
Copper indium selenides and related materials for photovoltaic devices
,”
Crit. Rev. Solid State Mater. Sci.
27
,
73
117
(
2002
).
17.
E.
Colegrove
,
J.-H.
Yang
,
S. P.
Harvey
,
M. R.
Young
,
J. M.
Burst
,
J. N.
Duenow
,
D. S.
Albin
,
S.-H.
Wei
, and
W. K.
Metzger
, “
Experimental and theoretical comparison of Sb, As, and P diffusion mechanisms and doping in CdTe
,”
J. Phys. D
51
(
7
),
075102
(
2018
).
18.
W. K.
Metzger
,
S.
Grover
,
D.
Lu
 et al., “
Exceeding 20% efficiency with in-situ group V doping in polycrystalline CdTe solar cells
,”
Nat. Energy
4
,
837
845
(
2019
).
19.
M.
Green
,
Y.
Hishikawa
,
E.
Dunlop
,
D.
Levi
,
J.
Hohl-Ebinger
, and
A.
Ho-Baillie
, “
Solar cell efficiency tables (version 52)
,”
Prog. Photovoltaics
26
(
7
),
427
436
(
2018
).
20.
A.
Kanevce
,
M.
Reese
,
T.
Barnes
,
S.
Jensen
, and
W.
Metzger
, “
The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells
,”
J. Appl. Phys.
121
(
21
),
214506
(
2017
).
21.
J.
Duenow
and
W.
Metzger
, “
Back-surface recombination, electron reflectors, and paths to 28% efficiency for thin-film photovoltaics: A CdTe case study
,”
J. Appl. Phys.
125
(
5
),
053101
(
2019
).
22.
T. A. M.
Fiducia
,
B. G.
Mendis
,
K.
Li
 et al., “
Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells
,”
Nat. Energy
4
,
504
511
(
2019
).
23.
X.
Zheng
,
D.
Kuciauskas
,
J.
Moseley
 et al., “
Recombination and bandgap engineering in CdSeTe/CdTe solar cells
,”
Appl. Phys. Lett. Mater.
7
,
071112
(
2019
).
24.
D. W.
de Quilettes
,
S. M.
Vorpahl
,
S. D.
Stranks
 et al., “
Impact of microstructure on local carrier lifetime in perovskite solar cells
,”
Science
348
(
6235
),
683
686
(
2015
).
25.
J.
Olson
,
R.
Ahrenkiel
,
D.
Dunlavy
,
B.
Keyes
, and
A.
Kibbler
, “
Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces
,”
Appl. Phys. Lett.
55
(
12
),
1208
1210
(
1989
).
26.
T.
Niewelt
,
A.
Richter
,
T. C.
Kho
 et al., “
Taking monocrystalline silicon to the ultimate lifetime limit
,”
Sol. Energy Mater. Sol. Cells
185
,
252
259
(
2018
).
27.
W. K.
Metzger
,
I. L.
Repins
, and
M. A.
Contreras
, “
Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells
,”
Appl. Phys. Lett.
93
,
022110
(
2008
).
28.
M.
Nardone
,
M.
Spehar
,
D.
Kuciauskas
, and
D.
Albin
, “
Numerical simulation of high-efficiency, scalable, all-back-contact Cd(Se,Te) solar cells
,”
J. Appl. Phys.
127
(
22
),
223104
(
2020
).
29.
W.
Metzger
,
R.
Ahrenkiel
,
J.
Dashdorj
, and
D.
Friedman
, “
Analysis of charge separation dynamics in a semiconductor junction
,”
Phys. Rev. B
71
(
3
),
035301
(
2005
).
30.
J. M.
Kephart
,
A.
Kindvall
,
D.
Williams
 et al., “
Sputter-deposited oxides for interface passivation of CdTe photovoltaics
,”
IEEE J. Photovoltaics
8
(
2
),
587
593
(
2018
).
31.
D.
Kuciauskas
,
J.
Kephart
,
J.
Moseley
,
W.
Metzger
,
W.
Sampath
, and
P.
Dippo
, “
Recombination velocity less than 100 cm/s at polycrystalline Al2O3/CdSeTe interfaces
,”
Appl. Phys. Lett.
112
(
26
),
263901
(
2018
).
32.
D.
Kuciauskas
,
J.
Moseley
,
P.
Ščajev
, and
D.
Albin
, “
Radiative efficiency and charge‐carrier lifetimes and diffusion length in polycrystalline CdSeTe heterostructures
,”
Phys. Status Solidi RRL
14
(
3
),
1900606
(
2020
).
33.
D. V.
O'Connor
and
D.
Phillips
,
Time-Correlated Single Photon Counting
(
Academic Press
,
1984
).
34.
C. L.
Perkins
, “
Molecular anchors for self-assembled monolayers on ZnO: A direct comparison of the thiol and phosphonic acid moieties
,”
J. Phys. Chem. C
113
,
18276
18286
(
2009
).
35.
C.
Perkins
,
D.
McGott
,
M.
Reese
, and
W.
Metzger
, “
SnO2-catalyzed oxidation in high-efficiency CdTe solar cells
,”
ACS Appl. Mater. Interfaces
11
(
13
),
13003
13010
(
2019
).
36.
K.
Wijewardena
,
D.
Neilson
, and
J.
Szymański
, “
Adsorption of zinc on cadmium telluride and mercury telluride surfaces
,”
Phys. Rev. B
44
(
12
),
6344
6350
(
1991
).

Supplementary Material

You do not currently have access to this content.