Motivated by the recent experimental realization of a two-dimensional (2D) BeN4 monolayer, in this study we investigate the structural, dynamical, electronic, and optical properties of a monolayer and few-layer BeN4 using first-principles calculations. The calculated phonon band dispersion reveals the dynamical stability of a free-standing BeN4 layer, while the cohesive energy indicates the energetic feasibility of the material. Electronic band dispersions show that monolayer BeN4 is a semi-metal whose conduction and valence bands touch each other at the Σ point. Our results reveal that increasing the layer number from single to six-layers tunes the electronic nature of BeN4. While monolayer and bilayer structures display a semi-metallic behavior, structures thicker than that of three-layers exhibit a metallic nature. Moreover, the optical parameters calculated for monolayer and bilayer structures reveal that the bilayer can absorb visible light in the ultraviolet and visible regions better than the monolayer structure. Our study investigates the electronic properties of Dirac-semimetal BeN4 that can be an important candidate for applications in nanoelectronic and optoelectronic.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D. A.
Jiang
,
Y. Y.
Zhang
,
S. V.
Dubonos
,
A. A.
Firsov
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
669
(
2004
).
2.
Y.
Zhang
,
Y. W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
204
(
2005
).
3.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
200
(
2005
).
4.
D.
Malko
,
C.
Neiss
,
F.
Vines
, and
A.
Gorling
,
Phys. Rev. Lett.
108
,
086804
(
2012
).
5.
Y.
Mu
,
F.
Ding
, and
H.
Lu
,
RSC Adv.
5
,
11392
11396
(
2015
).
6.
Y.
Nie
,
J.
Zhang
,
W.
Chen
,
Q.
Xia
,
X.
Wang
, and
G. H.
Guo
,
Phys. Rev. B
101
,
235443
(
2020
).
7.
X. F.
Zhou
,
X.
Dong
,
A. R.
Oganov
,
Q.
Zhu
,
Y.
Tian
, and
H. T.
Wang
,
Phys. Rev. Lett.
112
,
085502
(
2014
).
8.
L.
Li
,
X.
Kong
, and
F. M.
Peeters
,
Carbon N. Y.
141
,
712
718
(
2019
).
9.
S.
Cahangirov
,
M.
Topsakal
,
E.
Akturk
,
H.
Sahin
, and
S.
Ciraci
,
Phys. Rev. Lett.
102
,
236804
(
2009
).
10.
C. C.
Liu
,
W.
Feng
, and
Y.
Yao
,
Phys. Rev. Lett.
107
,
076802
(
2011
).
11.
C.-C.
Liu
,
H.
Jiang
, and
Y.
Yao
,
Phys. Rev. B
84
,
195430
(
2011
).
12.
K.
Zhang
,
M.
Yan
,
H.
Zhang
,
H.
Huang
,
M.
Arita
,
Z.
Sun
,
W.
Duan
,
Y.
Wu
, and
S.
Zhou
,
Phys. Rev. B
96
,
125102
(
2017
).
13.
M.
Bernardi
,
M.
Palummo
, and
J. C.
Grossman
,
Phys. Rev. Lett.
108
,
226805
(
2012
).
14.
M.
Shi
,
P.
Mo
,
J.
Lu
, and
J.
Liu
,
J. Appl. Phys.
126
,
044305
(
2019
).
15.
H.
Chen
,
S.
Zhang
,
W.
Jiang
,
C.
Zhang
,
H.
Guo
,
Z.
Liu
,
Z.
Wang
,
F.
Liu
, and
X.
Niu
,
J. Mater. Chem. A
6
,
11252
11259
(
2018
).
16.
S. M.
Young
and
B. J.
Wieder
,
Phys. Rev. Lett.
118
,
186401
(
2017
).
17.
M.
Qi
,
C.
An
,
Y.
Zhou
,
H.
Wu
,
B.
Zhang
,
C.
Chen
,
Y.
Yuan
,
S.
Wang
,
Y.
Zhou
,
X.
Chen
,
R.
Zhang
, and
Z.
Yang
,
Phys. Rev. B
101
,
115124
(
2020
).
18.
C.
Zhang
and
Q.
Sun
,
J. Phys. Chem. Lett.
7
,
2664
2670
(
2016
).
19.
Y. M.
Ding
,
Y.
Ji
,
H.
Dong
,
N.
Rujisamphan
, and
Y.
Li
,
Nanotechnology
30
,
465202
(
2019
).
20.
C.
Chen
,
B.
Huang
, and
J.
Wu
,
AIP Adv.
8
,
105105
(
2018
).
21.
F.
Jia
,
Y.
Qi
,
S.
Hu
,
T.
Hu
,
M.
Li
,
G.
Zhao
,
J.
Zhang
,
A.
Stroppa
, and
W.
Ren
,
RSC Adv.
7
,
38410
38414
(
2017
).
22.
Y.
Wang
,
F.
Li
,
Y.
Li
, and
Z.
Chen
,
Nat. Commun.
7
,
1
7
(
2016
).
23.
Y.
Li
,
Y.
Liao
, and
Z.
Chen
,
Angew. Chem. Int. Ed.
53
,
7248
7252
(
2014
).
24.
B.
Wang
,
S.
Yuan
,
Y.
Li
,
L.
Shi
, and
J.
Wang
,
Nanoscale
9
,
5577
5582
(
2017
).
25.
J.
Yu
and
W.
Guo
,
J. Phys. Chem. Lett.
4
,
1856
1860
(
2013
).
26.
S.
Kansara
,
Y.
Sonvane
,
P. N.
Gajjar
, and
S. K.
Gupta
,
RSC Adv.
10
,
26804
26812
(
2020
).
27.
S.
Zhang
,
Z.
Zhao
,
L.
Liu
, and
G.
Yang
,
J. Power Sources
365
,
155
161
(
2017
).
28.
X.
Li
and
Q.
Wang
,
Phys. Rev. B
97
,
085418
(
2018
).
29.
A.
Bafekry
,
C.
Stampfl
,
M.
Ghergherehchi
, and
S. F.
Shayesteh
,
Carbon
157
,
371
384
(
2020
).
30.
A.
Bafekry
,
C.
Stampfl
,
N. V.
Chuong
,
M.
Ghergherehchi
, and
B.
Mortazavi
,
Phys. Chem. Chem. Phys.
22
,
24471
(
2020
).
31.
A.
Bafekry
,
M.
Obeid
,
C.
Nguyen
,
M. B.
Tagani
, and
M.
Ghergherehchi
,
J. Mater. Chem. A
8
,
13248
(
2020
).
32.
A.
Bafekry
,
B.
Akgenc
,
M.
Ghergherehchi
, and
F. M.
Peeters
,
J. Phys. Cond. Matter
32
,
355504
(
2020
).
33.
A.
Bafekry
,
F.
Shojaei
,
M. M.
Obeid
,
M.
Ghergherehchi
,
C.
Nguyen
, and
M.
Oskouian
,
RSC Adv.
10
,
31894
(
2020
).
34.
A.
Bafekry
,
M.
Shahrokhi
,
H. R.
Jappor
,
A.
Shafique
,
F.
Shojaei
,
S. A. H.
Feghhi
,
M.
Ghergherehchi
, and
D.
Gogova
,
Nanotechnology
32
,
215702
(
2021
).
35.
S.
Wei
,
D.
Li
,
Z.
Liu
,
W.
Wang
,
F.
Tian
,
K.
Bao
,
D.
Duan
,
B.
Liu
, and
T.
Cui
,
J. Phys. Chem. C
121
,
9766
9772
(
2017
).
36.
M.
Bykov
,
T.
Fedotenko
,
S.
Chariton
,
D.
Laniel
,
K.
Glazyrin
,
M.
Hanfland
,
J. S.
Smith
,
V. B.
Prakapenka
,
M. F.
Mahmood
,
A. F.
Goncharov
,
A. V.
Ponomareva
,
F.
Tasnadi
,
A. I.
Abrikosov
,
T.
Bin Masood
,
I.
Hotz
,
A. N.
Rudenko
,
M. I.
Katsnelson
,
N.
Dubrovinskaia
,
L.
Dubrovinsky
, and
I. A.
Abrikosov
,
Phys. Rev. Lett.
126
,
175501
(
2021
).
37.
T.
Ozaki
,
K.
Nishio
, and
H.
Kino
,
Phys. Rev. B
81
,
035116
(
2010
).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
39.
N.
Troullier
and
J.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
40.
T.
Ozaki
,
Phys. Rev. B
67
,
155108
(
2003
).
41.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
69
,
195113
(
2004
).
42.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
43.
T.
Bucko
,
J.
Hafner
,
S.
Lebegue
, and
J. G.
Angyan
,
Phys. Chem. A
114
,
11814
(
2010
).
44.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jonsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
45.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. Lett.
50
,
1998
2001
(
1983
).
46.
I.
Horcas
,
R.
Fernndez
,
J. M.
Gmez-Rodrguez
,
J.
Colchero
,
J.
Gmez-Herrero
, and
A. M.
Baro
,
Rev. Sci. Inst.
78
,
013705
(
2007
).
47.
R.
Hill
,
Proc. Phys. Soc., London, Sect. A
65
,
349
(
1952
).
48.
W. C.
Hu
,
Y.
Liu
,
D. J.
Li
,
X. Q.
Zeng
, and
C. S.
Xu
,
Comput. Mater. Sci.
83
,
27
(
2014
).
You do not currently have access to this content.