Inspired by the parallelism and efficiency of the brain, several candidates for artificial synapse devices have been developed for neuromorphic computing, yet a nonlinear and asymmetric synaptic response curve precludes their use for backpropagation, the foundation of modern supervised learning. Spintronic devices—which benefit from high endurance, low power consumption, low latency, and CMOS compatibility—are a promising technology for memory, and domain-wall magnetic tunnel junction (DW-MTJ) devices have been shown to implement synaptic functions such as long-term potentiation and spike-timing dependent plasticity. In this work, we propose a notched DW-MTJ synapse as a candidate for supervised learning. Using micromagnetic simulations at room temperature, we show that notched synapses ensure the non-volatility of the synaptic weight and allow for highly linear, symmetric, and reproducible weight updates using either spin transfer torque (STT) or spin–orbit torque (SOT) mechanisms of DW propagation. We use lookup tables constructed from micromagnetics simulations to model the training of neural networks built with DW-MTJ synapses on both the MNIST and Fashion-MNIST image classification tasks. Accounting for thermal noise and realistic process variations, the DW-MTJ devices achieve classification accuracy close to ideal floating-point updates using both STT and SOT devices at room temperature and at 400 K. Our work establishes the basis for a magnetic artificial synapse that can eventually lead to hardware neural networks with fully spintronic matrix operations implementing machine learning.

1.
W. A.
Wulf
and
S. A.
McKee
, “
Hitting the memory wall
,”
ACM SIGARCH Comput. Archit. News
23
,
20
24
(
1995
).
2.
T. P.
Xiao
,
C. H.
Bennett
,
B.
Feinberg
,
S.
Agarwal
, and
M. J.
Marinella
, “
Analog architectures for neural network acceleration based on non-volatile memory
,”
Appl. Phys. Rev.
7
,
031301
(
2020
).
3.
H.
Akinaga
and
H.
Shima
, “
Resistive random access memory (ReRAM) based on metal oxides
,”
Proc. IEEE
98
,
2237
2251
(
2010
).
4.
F.
Pan
,
S.
Gao
,
C.
Chen
,
C.
Song
, and
F.
Zeng
, “
Recent progress in resistive random access memories: Materials, switching mechanisms, and performance
,”
Mater. Sci. Eng., R
83
,
1
59
(
2014
).
5.
H. P.
Wong
,
S.
Raoux
,
S.
Kim
,
J.
Liang
,
J. P.
Reifenberg
,
B.
Rajendran
,
M.
Asheghi
, and
K. E.
Goodson
, “
Phase change memory
,”
Proc. IEEE
98
,
2201
2227
(
2010
).
6.
G. W.
Burr
,
M. J.
Breitwisch
,
M.
Franceschini
,
D.
Garetto
,
K.
Gopalakrishnan
,
B.
Jackson
,
B.
Kurdi
,
C.
Lam
,
L. A.
Lastras
,
A.
Padilla
,
B.
Rajendran
,
S.
Raoux
, and
R. S.
Shenoy
, “
Phase change memory technology
,”
J. Vac. Sci. Technol. B
28
,
223
262
(
2010
).
7.
M.
Kund
,
G.
Beitel
,
C.
Pinnow
,
T.
Rohr
,
J.
Schumann
,
R.
Symanczyk
,
K.
Ufert
, and
G.
Muller
, “
Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm
,” in
IEEE International Electron Devices Meeting, IEDM Technical Digest
(
2005
), pp.
754
757
.
8.
Y.
Van De Burgt
,
E.
Lubberman
,
E. J.
Fuller
,
S. T.
Keene
,
G. C.
Faria
,
S.
Agarwal
,
M. J.
Marinella
,
A.
Alec Talin
, and
A.
Salleo
, “
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
,”
Nat. Mater.
16
,
414
418
(
2017
).
9.
P.
Gkoupidenis
,
N.
Schaefer
,
B.
Garlan
, and
G. G.
Malliaras
, “
Neuromorphic functions in PEDOT:PSS organic electrochemical transistors
,”
Adv. Mater.
27
,
7176
7180
(
2015
).
10.
Y.
Li
,
T. P.
Xiao
,
C. H.
Bennett
,
E.
Isele
,
A.
Melianas
,
H.
Tao
,
M. J.
Marinella
,
A.
Salleo
,
E. J.
Fuller
, and
A. A.
Talin
, “
In situ parallel training of analog neural network using electrochemical random-access memory
,”
Front. Neurosci.
15
,
323
(
2021
).
11.
S.
Agarwal
,
S. J.
Plimpton
,
D. R.
Hughart
,
A. H.
Hsia
,
I.
Richter
,
J. A.
Cox
,
C. D.
James
, and
M. J.
Marinella
, “
Resistive memory device requirements for a neural algorithm accelerator
,” in
International Joint Conference on Neural Networks (IJCNN)
(
IEEE
,
2016
), pp.
929
938
.
12.
X.
Sun
and
S.
Yu
, “
Impact of non-ideal characteristics of resistive synaptic devices on implementing convolutional neural networks
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
9
,
570
579
(
2019
).
13.
J. A.
Currivan
,
Y.
Jang
,
M. D.
Mascaro
,
M. A.
Baldo
, and
C. A.
Ross
, “
Low energy magnetic domain wall logic in short, narrow, ferromagnetic wires
,”
IEEE Magn. Lett.
3
,
3000104
(
2012
).
14.
J. A.
Currivan-Incorvia
,
S.
Siddiqui
,
S.
Dutta
,
E. R.
Evarts
,
J.
Zhang
,
D.
Bono
,
C. A.
Ross
, and
M. A.
Baldo
, “
Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls
,”
Nat. Commun.
7
,
10275
(
2016
).
15.
C.
Cui
,
O. G.
Akinola
,
N.
Hassan
,
C. H.
Bennett
,
M. J.
Marinella
,
J. S.
Friedman
, and
J. A. C.
Incorvia
, “
Maximized lateral inhibition in paired magnetic domain wall racetracks for neuromorphic computing
,” arXiv:1912.04505 (
2019
).
16.
N.
Hassan
,
X.
Hu
,
L.
Jiang-Wei
,
W. H.
Brigner
,
O. G.
Akinola
,
F.
Garcia-Sanchez
,
M.
Pasquale
,
C. H.
Bennett
,
J. A. C.
Incorvia
, and
J. S.
Friedman
, “
Magnetic domain wall neuron with lateral inhibition
,”
J. Appl. Phys.
124
,
152127
(
2018
).
17.
A.
Sengupta
,
Y.
Shim
, and
K.
Roy
, “
Proposal for an all-spin artificial neural network: Emulating neural and synaptic functionalities through domain wall motion in ferromagnets
,”
IEEE Trans. Biomed. Circuits Syst.
10
,
1152
1160
(
2016
).
18.
O.
Akinola
,
X.
Hu
,
C. H.
Bennett
,
M.
Marinella
,
J. S.
Friedman
, and
J. A. C.
Incorvia
, “
Three-terminal magnetic tunnel junction synapse circuits showing spike-timing-dependent plasticity
,”
J. Phys. D
52
,
49LT01
(
2019
).
19.
U.
Sahu
,
A.
Pandey
,
K.
Goyal
, and
D.
Bhowmik
, “
Spike time dependent plasticity (STDP) enabled learning in spiking neural networks using domain wall based synapses and neurons
,”
AIP Adv.
9
,
125339
(
2019
).
20.
K.
Yue
,
Y.
Liu
,
R. K.
Lake
, and
A. C.
Parker
, “
A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors
,”
Sci. Adv.
5
,
eaau8170
(
2019
).
21.
C. H.
Bennett
,
N.
Hassan
,
X.
Hu
,
J. A. C.
Incornvia
,
J. S.
Friedman
, and
M. J.
Marinella
, “
Semi-supervised learning and inference in domain-wall magnetic tunnel junction (DW-MTJ) neural networks
,” in
Spintronics XII
(
International Society for Optics and Photonics
,
2019
), Vol.
11090
, p.
110903I
.
22.
V.
Joshi
,
M. L.
Gallo
,
S.
Haefeli
,
I.
Boybat
,
S. R.
Nandakumar
,
C.
Piveteau
,
M.
Dazzi
,
B.
Rajendran
,
A.
Sebastian
, and
E.
Eleftheriou
, “
Accurate deep neural network inference using computational phase-change memory
,”
Nat. Commun.
11
,
2473
(
2020
).
23.
D.
Kaushik
,
J.
Sharda
, and
D.
Bhowmik
, “
Synapse cell optimization and back-propagation algorithm implementation in a domain wall synapse based crossbar neural network for scalable on-chip learning
,”
Nanotechnology
31
,
364004
(
2020
).
24.
Y.
Lecun
,
C.
Cortes
, and
C. J. C.
Burges
, see http://yann.lecun.com/exdb/mnist/ for “The MNIST Database of Handwritten Digits.”
25.
H.
Xiao
,
K.
Rasul
, and
R.
Vollgraf
, “
Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
,” arXiv:1708.07747 (
2017
).
26.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
, “
The design and verification of MuMax3
,”
AIP Adv.
4
,
107133
(
2014
).
27.
C. H.
Bennett
,
D.
Garland
,
R. B.
Jacobs-Gedrim
,
S.
Agarwal
, and
M. J.
Marinella
, “
Wafer-scale TaOx device variability and implications for neuromorphic computing applications
,” in
IEEE International Reliability Physics Symposium (IRPS)
(
IEEE
,
2019
), pp.
1
4
.
28.
S. A.
Siddiqui
,
S.
Dutta
,
A.
Tang
,
L.
Liu
,
C. A.
Ross
, and
M. A.
Baldo
, “
Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators
,”
Nano Lett.
20
,
1033
1040
(
2020
).
29.
A.
Lyle
,
J.
Harms
,
T.
Klein
,
A.
Lentsch
,
A.
Klemm
,
D.
Martens
, and
J. P.
Wang
, “
Integration of spintronic interface for nanomagnetic arrays
,”
AIP Adv.
1
,
042177
(
2011
).
30.
B.
Jinnai
,
K.
Watanabe
,
S.
Fukami
, and
H.
Ohno
, “
Scaling magnetic tunnel junction down to single-digit nanometers—Challenges and prospects
,”
Appl. Phys. Lett.
116
,
160501
(
2020
).
31.
G. S.
Beach
,
M.
Tsoi
, and
J. L.
Erskine
, “
Current-induced domain wall motion
,”
J. Magn. Magn. Mater.
320
,
1272
1281
(
2008
).
32.
W.
Wu
,
H.
Wu
,
B.
Gao
,
P.
Yao
,
X.
Zhang
,
X.
Peng
,
S.
Yu
, and
H.
Qian
, “
A methodology to improve linearity of analog RRAM for neuromorphic computing
,” in
IEEE Symposium on VLSI Technology
(
2018
), pp.
103
104
.
33.
S.
Agarwal
,
R. B.
Jacobs Gedrim
,
A. H.
Hsia
,
D. R.
Hughart
,
E. J.
Fuller
,
A. A.
Talin
,
C. D.
James
,
S. J.
Plimpton
, and
M. J.
Marinella
, “
Achieving ideal accuracies in analog neuromorphic computing using periodic carry
,” in
Symposium on VLSI Technology
(
2017
), pp.
T174
T175
.
34.
L.
Xue
,
A.
Kontos
,
C.
Lazik
,
S.
Liang
, and
M.
Pakala
, “
Scalability of magnetic tunnel junctions patterned by a novel plasma ribbon beam etching process on 300 mm wafers
,”
IEEE Trans. Magn.
51
,
4401503
(
2015
).
35.
M. J.
Marinella
,
S.
Agarwal
,
A.
Hsia
,
I.
Richter
,
R.
Jacobs-Gedrim
,
J.
Niroula
,
S. J.
Plimpton
,
E.
Ipek
, and
C. D.
James
, “
Multiscale co-design analysis of energy, latency, area, and accuracy of a ReRAM analog neural training accelerator
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
8
,
86
101
(
2018
).
36.
S.
Gupta
,
A.
Agrawal
,
K.
Gopalakrishnan
, and
P.
Narayanan
, “
Deep learning with limited numerical precision
,” in
Proceedings of the 32nd International Conference on International Conference on Machine Learning
(ICML'15) (
JMLR.org
,
2015
), Vol.
37
, p.
1737
1746
.
37.
P.
Micikevicius
,
S.
Narang
,
J.
Alben
,
G.
Diamos
,
E.
Elsen
,
D.
Garcia
,
B.
Ginsburg
,
M.
Houston
,
O.
Kuchaiev
,
G.
Venkatesh
 et al., “
Mixed precision training
,” arXiv:1710.03740 (
2017
).
38.
H.
Noh
,
T.
You
,
J.
Mun
, and
B.
Han
, “
Regularizing deep neural networks by noise: Its interpretation and optimization
,” in
Advances in Neural Information Processing Systems
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
Curran Associates, Inc
.,
2017
), Vol.
30
, pp.
5109
5118
.
39.
A. V.
Khvalkovskiy
,
V.
Cros
,
D.
Apalkov
,
V.
Nikitin
,
M.
Krounbi
,
K. A.
Zvezdin
,
A.
Anane
,
J.
Grollier
, and
A.
Fert
, “
Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion
,”
Phys. Rev. B
87
,
020402
(
2013
).
You do not currently have access to this content.