Understanding the effects of atomic structure modification in hematite photoanodes is essential for the rational design of high-efficiency functionalizations. Recently, it was found that interface modification with Sn/Sb segregates considerably increases hematite photocatalytic efficiency. However, the understanding of the different electronic effects of these modifications at the atomic level is still lacking. This Letter describes the segregation effects of two different dopants–Sn and Sb–on both the solid–solid (grain boundaries) and solid–liquid interfaces (surfaces) of hematite. Within an ab initio approach, we quantitatively extract the potential barrier reduction on polycrystalline interfaces due to the dopant, which causes an increase in the inter-grain electron transport. Concomitantly, the dopants' segregation on hematite surfaces results in a decrease in the oxygen vacancy formation energy. Such vacancies lead to the experimentally observed rise of the flatband potential. The comprehension of the electronic effects of dopants on both types of interfaces explains the experimental peak efficiency of interface-modified hematite with dopant segregates, also enabling the control and design of interfaces for different higher-efficiency applications.

1.
K.
Sivula
,
F. L.
Formal
, and
M.
Grätzel
, “
Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes
,”
ChemSusChem
4
,
432
449
(
2011
).
2.
M. G.
Walter
,
E. L.
Warren
,
J. R.
McKone
,
S. W.
Boettcher
,
Q.
Mi
,
E. A.
Santori
, and
N. S.
Lewis
, “
Solar water splitting cells
,”
Chem. Rev.
110
,
6446
6473
(
2010
).
3.
R. H.
Gonçalves
and
E. R.
Leite
, “
The colloidal nanocrystal deposition process: An advanced method to prepare high performance hematite photoanodes for water splitting
,”
Energy Environ. Sci.
7
,
2250
2254
(
2014
).
4.
A. G.
Hufnagel
,
H.
Hajiyani
,
S.
Zhang
,
T.
Li
,
O.
Kasian
,
B.
Gault
,
B.
Breitbach
,
T.
Bein
,
D.
Fattakhova-Rohlfing
,
C.
Scheu
, and
R.
Pentcheva
, “
Why tin-doping enhances the efficiency of hematite photoanodes for water splitting: The full picture
,”
Adv. Funct. Mater.
28
,
1804472
(
2018
).
5.
A.
Annamalai
,
R.
Sandström
,
E.
Gracia-Espino
,
N.
Boulanger
,
J.-F.
Boily
,
I.
Mühlbacher
,
A.
Shchukarev
, and
T.
Wagberg
, “
Influence of Sb5+ as a double donor on hematite (Fe3+) photoanodes for surface-enhanced photoelectrochemical water oxidation
,”
ACS Appl. Mater. Interfaces
10
,
16467
16473
(
2018
).
6.
A. E.
Nogueira
,
M. R.
Santos Soares
,
J. B.
Souza Junior
,
C. A.
Ospina Ramirez
,
F. L.
Souza
, and
E. R.
Leite
, “
Discovering a selective semimetal element to increase hematite photoanode charge separation efficiency
,”
J. Mater. Chem. A
7
,
16992
16998
(
2019
).
7.
M. R. S.
Soares
,
R. H.
Gonçalves
,
I. C.
Nogueira
,
J.
Bettini
,
A. J.
Chiquito
, and
E. R.
Leite
, “
Understanding the fundamental electrical and photoelectrochemical behavior of a hematite photoanode
,”
Phys. Chem. Chem. Phys.
18
,
21780
21788
(
2016
).
8.
J.
Engel
and
H. L.
Tuller
, “
The electrical conductivity of thin film donor doped hematite: From insulator to semiconductor by defect modulation
,”
Phys. Chem. Chem. Phys.
16
,
11374
11380
(
2014
).
9.
M. R. S.
Soares
,
C. A. R.
Costa
,
E. M.
Lanzoni
,
J.
Bettini
,
C. A. O.
Ramirez
,
F. L.
Souza
,
E.
Longo
, and
E. R.
Leite
, “
Unraveling the role of Sn segregation in the electronic transport of polycrystalline hematite: Raising the electronic conductivity by lowering the grain-boundary blocking effect
,”
Adv. Electron. Mater.
5
,
1900065
(
2019
).
10.
F. B.
Destro
, “
Number of grain and its influence on electrical properties of hematite modified with different cations
,” Ph.D. thesis (
Department of Materials Science and Engineering, Federal University of São Carlos
,
2020
).
11.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
12.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
13.
G. R.
Schleder
,
A. C. M.
Padilha
,
C. M.
Acosta
,
M.
Costa
, and
A.
Fazzio
, “
From DFT to machine learning: Recent approaches to materials science–A review
,”
J. Phys. Mater.
2
,
032001
(
2019
).
14.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
1396
(
1997
).
17.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
18.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
19.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study
,”
Phys. Rev. B
57
,
1505
1509
(
1998
).
20.
X.
Huang
,
S. K.
Ramadugu
, and
S. E.
Mason
, “
Surface-specific DFT + U approach applied to α-Fe2O3(0001)
,”
J. Phys. Chem. C
120
,
4919
4930
(
2016
).
21.
A.
Kay
,
I.
Cesar
, and
M.
Grätzel
, “
New benchmark for water photooxidation by nanostructured α-Fe2O3 films
,”
J. Am. Chem. Soc.
128
,
15714
15721
(
2006
).
22.
X.
Wen
,
S.
Wang
,
Y.
Ding
,
Z. L.
Wang
, and
S.
Yang
, “
Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires
,”
J. Phys. Chem. B
109
,
215
220
(
2005
).
23.
Y.
Ling
,
G.
Wang
,
D. A.
Wheeler
,
J. Z.
Zhang
, and
Y.
Li
, “
Sn-doped hematite nanostructures for photoelectrochemical water splitting
,”
Nano Lett.
11
,
2119
2125
(
2011
).
24.
Z.
Wang
,
X.
Mao
,
P.
Chen
,
M.
Xiao
,
S. A.
Monny
,
S.
Wang
,
M.
Konarova
,
A.
Du
, and
L.
Wang
, “
Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes
,”
Angew. Chem., Int. Ed.
58
,
1030
1034
(
2019
).
25.
A. L. M.
Freitas
,
D. N. F.
Muche
,
E. R.
Leite
, and
F. L.
Souza
, “
Interface engineering of nanoceramic hematite photoelectrode for solar energy conversion
,”
J. Am. Ceram. Soc.
103
,
6833
6846
(
2020
).
26.
A.
Hellman
,
B.
Iandolo
,
B.
Wickman
,
H.
Grönbeck
, and
J.
Baltrusaitis
, “
Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles
,”
Surf. Sci.
640
,
45
49
(
2015
).
27.
H.
Pan
,
D.
Ao
, and
G.
Qin
, “
Synergistic effects of dopant (Ti or Sn) and oxygen vacancy on the electronic properties of hematite: A DFT investigation
,”
RSC Adv.
10
,
23263
23269
(
2020
).
28.
The generated GB cell considers two grains rotated by 25° with respect to each other, with two GBs in the unit cell to guarantee the periodicity, with 13.4 Å of lateral separation. Our choice were guided by experimental results, which show that hematite grain boundaries present high-angles,9 with most of it higher than 15°.31 We have constructed the lowest possible commensurate angle which was still computationally viable, hosting 284 atoms in the unit cell.
29.
O.
Neufeld
and
M.
Caspary Toroker
, “
Play the heavy: An effective mass study for α-Fe2O3 and corundum oxides
,”
J. Chem. Phys.
144
,
164704
(
2016
).
30.
A.
Bosman
and
H.
van Daal
, “
Small-polaron versus band conduction in some transition-metal oxides
,”
Adv. Phys.
19
,
1
117
(
1970
).
31.
B.
Wickman
,
A.
Bastos Fanta
,
A.
Burrows
,
A.
Hellman
,
J. B.
Wagner
, and
B.
Iandolo
, “
Iron oxide films prepared by rapid thermal processing for solar energy conversion
,”
Sci. Rep.
7
,
40500
(
2017
).
You do not currently have access to this content.