Efficient second harmonic generation (SHG) in nanophotonic designs based on all-dielectric nanostructures demands materials with large values of the quadratic nonlinear susceptibility, low dissipative losses, and high refractive index. One of the best materials meeting all these parameters is gallium phosphide (GaP). However, second-order nonlinearity requires high crystallinity and morphology quality of the GaP layer grown for further lithographic processing. Here we develop a method to fabricate high-quality crystalline GaP metasurfaces, which demonstrate pronounced linear and nonlinear optical properties. Direct growth of a GaP layer on a sapphire substrate tackles the previous problem of wafer bonding, because of high optical contrast between fabricated resonant nanoparticles and the substrate. As a result, the fabricated GaP metasurface supports bound state in continuum mode with an experimental quality factor around 100 yielding a strong enhancement of SHG in narrow spectral range. We believe that the developed approach will become a versatile platform for nonlinear all-dielectric nanophotonics.

1.
V.
Valev
, “
Characterization of nanostructured plasmonic surfaces with second harmonic generation
,”
Langmuir
28
,
15454
15471
(
2012
).
2.
W.
Ye
,
F.
Zeuner
,
X.
Li
,
B.
Reineke
,
S.
He
,
C.-W.
Qiu
,
J.
Liu
,
Y.
Wang
,
S.
Zhang
, and
T.
Zentgraf
, “
Spin and wavelength multiplexed nonlinear metasurface holography
,”
Nat. Commun.
7
,
11930
(
2016
).
3.
M.
Mesch
,
B.
Metzger
,
M.
Hentschel
, and
H.
Giessen
, “
Nonlinear plasmonic sensing
,”
Nano Lett.
16
,
3155
3159
(
2016
).
4.
G.
Li
,
S.
Zhang
, and
T.
Zentgraf
, “
Nonlinear photonic metasurfaces
,”
Nat. Rev. Mater.
2
,
17010
(
2017
).
5.
R.
Camacho-Morales
,
M.
Rahmani
,
S.
Kruk
,
L.
Wang
,
L.
Xu
,
D. A.
Smirnova
,
A. S.
Solntsev
,
A.
Miroshnichenko
,
H. H.
Tan
,
F.
Karouta
,
S.
Naureen
,
K.
Vora
,
L.
Carletti
,
C.
De Angelis
,
C.
Jagadish
,
D. N.
Kivshar
, and
Y. S.
Neshev
, “
Nonlinear generation of vector beams from AlGaAs nanoantennas
,”
Nano Lett.
16
,
7191
7197
(
2016
).
6.
J.
Cambiasso
,
G.
Grinblat
,
Y.
Li
,
A.
Rakovich
,
E.
Cortés
, and
S. A.
Maier
, “
Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas
,”
Nano Lett.
17
,
1219
1225
(
2017
).
7.
K.
Koshelev
,
S.
Kruk
,
E.
Melik-Gaykazyan
,
J.-H.
Choi
,
A.
Bogdanov
,
H.-G.
Park
, and
Y.
Kivshar
, “
Subwavelength dielectric resonators for nonlinear nanophotonics
,”
Science
367
,
288
292
(
2020
).
8.
V. V.
Fedorov
,
A.
Bolshakov
,
O.
Sergaeva
,
V.
Neplokh
,
D.
Markina
,
S.
Bruyere
,
G.
Saerens
,
M. I.
Petrov
,
R.
Grange
,
M.
Timofeeva
,
S. V.
Makarov
, and
I. S.
Mukhin
, “
Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion
,”
ACS Nano
14
,
10624
10632
(
2020
).
9.
J. D.
Sautter
,
L.
Xu
,
A. E.
Miroshnichenko
,
M.
Lysevych
,
I.
Volkovskaya
,
D. A.
Smirnova
,
R.
Camacho-Morales
,
K.
Zangeneh Kamali
,
F.
Karouta
,
K.
Vora
,
H. H.
Tan
,
M.
Kauranen
,
I.
Staude
,
C.
Jagadish
,
D. N.
Neshev
, and
M.
Rahmani
, “
Tailoring second-harmonic emission from (111)-GaAs nanoantennas
,”
Nano Lett.
19
,
3905
3911
(
2019
).
10.
L.
Carletti
,
A.
Locatelli
,
D.
Neshev
, and
C.
De Angelis
, “
Shaping the radiation pattern of second-harmonic generation from AlGaAs dielectric nanoantennas
,”
ACS Photonics
3
,
1500
1507
(
2016
).
11.
D. J.
Wilson
,
K.
Schneider
,
S.
Hönl
,
M.
Anderson
,
Y.
Baumgartner
,
L.
Czornomaz
,
T. J.
Kippenberg
, and
P.
Seidler
, “
Integrated gallium phosphide nonlinear photonics
,”
Nat. Photonics
14
,
57
62
(
2020
).
12.
A. P.
Anthur
,
H.
Zhang
,
R.
Paniagua-Dominguez
,
D. A.
Kalashnikov
,
S. T.
Ha
,
T. W.
Maß
,
A. I.
Kuznetsov
, and
L.
Krivitsky
, “
Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces
,”
Nano Lett.
20
,
8745
8751
(
2020
).
13.
P.
Demeester
,
I.
Pollentier
,
P.
De Dobbelaere
,
C.
Brys
, and
P.
Van Daele
, “
Epitaxial lift-off and its applications
,”
Semicond. Sci. Technol.
8
,
1124
(
1993
).
14.
H.
Emmer
,
C. T.
Chen
,
R.
Saive
,
D.
Friedrich
,
Y.
Horie
,
A.
Arbabi
,
A.
Faraon
, and
H. A.
Atwater
, “
Fabrication of single crystal gallium phosphide thin films on glass
,”
Sci. Rep.
7
,
4643
(
2017
).
15.
J.
Narayan
, “
Domain matching epitaxy: A new paradigm for epitaxial growth of oxides
,” in
Proceedings-Electrochemical Society
(
2004
), pp.
103
114
.
16.
A.
Krasnok
,
S.
Makarov
,
M.
Petrov
,
R.
Savelev
,
P.
Belov
, and
Y.
Kivshar
, “
Towards all-dielectric metamaterials and nanophotonics
,”
Metamaterials
9502
,
950203
(
2015
).
17.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk'yanchuk
, “
Optically resonant dielectric nanostructures
,”
Science
354
,
aag2472
(
2016
).
18.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
19.
K.
Koshelev
,
Y.
Tang
,
K.
Li
,
D.-Y.
Choi
,
G.
Li
, and
Y.
Kivshar
, “
Nonlinear metasurfaces governed by bound states in the continuum
,”
ACS Photonics
6
,
1639
1644
(
2019
).
20.
N.
Bernhardt
,
K.
Koshelev
,
S. J.
White
,
K. W. C.
Meng
,
J. E.
Froch
,
S.
Kim
,
T. T.
Tran
,
D.-Y.
Choi
,
Y.
Kivshar
, and
A. S.
Solntsev
, “
Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers
,”
Nano Lett.
20
,
5309
5314
(
2020
).
21.
A. I.
Ovcharenko
,
C.
Blanchard
,
J.-P.
Hugonin
, and
C.
Sauvan
, “
Bound states in the continuum in symmetric and asymmetric photonic crystal slabs
,”
Phys. Rev. B
101
,
155303
(
2020
).
22.
K.
Koshelev
,
S.
Lepeshov
,
M.
Liu
,
A.
Bogdanov
, and
Y.
Kivshar
, “
Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum
,”
Phys. Rev. Lett.
121
,
193903
(
2018
).
23.
P.
Ginzburg
,
A.
Krasavin
,
Y.
Sonnefraud
,
A.
Murphy
,
R. J.
Pollard
,
S. A.
Maier
, and
A. V.
Zayats
, “
Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation
,”
Phys. Rev. B
86
,
085422
(
2012
).
24.
P.
Segovia
,
G.
Marino
,
A. V.
Krasavin
,
N.
Olivier
,
G. A.
Wurtz
,
P. A.
Belov
,
P.
Ginzburg
, and
A. V.
Zayats
, “
Hyperbolic metamaterial antenna for second-harmonic generation tomography
,”
Opt. Express
23
,
30730
30738
(
2015
).
25.
K.
Koshelev
,
A.
Bogdanov
, and
Y.
Kivshar
, “
Meta-optics and bound states in the continuum
,”
Sci. Bull.
64
,
836
842
(
2019
).
26.
K.
Wang
,
J. G.
Titchener
,
S. S.
Kruk
,
L.
Xu
,
H.-P.
Chung
,
M.
Parry
,
I. I.
Kravchenko
,
Y.-H.
Chen
,
A. S.
Solntsev
,
Y. S.
Kivshar
,
D. N.
Neshev
, and
A. A.
Sukhorukov
, “
Quantum metasurface for multiphoton interference and state reconstruction
,”
Science
361
,
1104
1108
(
2018
).
27.
G.
Grinblat
,
H.
Zhang
,
M. P.
Nielsen
,
L.
Krivitsky
,
R.
Berté
,
Y.
Li
,
B.
Tilmann
,
E.
Cortés
,
R. F.
Oulton
,
A. I.
Kuznetsov
, and
S. A.
Maier
, “
Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation
,”
Sci. Adv.
6
,
eabb3123
(
2020
).
28.
G. P.
Zograf
,
D.
Ryabov
,
V.
Rutckaia
,
P.
Voroshilov
,
P.
Tonkaev
,
D. V.
Permyakov
,
Y.
Kivshar
, and
S. V.
Makarov
, “
Stimulated Raman scattering from mie-resonant subwavelength nanoparticles
,”
Nano Lett.
20
,
5786
5791
(
2020
).

Supplementary Material

You do not currently have access to this content.