We present a shear wave elastography (SWE) approach for thyroid characterization that is inspired by passive elastography, which extracts elasticity from the natural vibrations in living tissues that are caused by cardiac motion, blood pulsatility, and muscle activity. On thyroid, this physiological noise is mainly due to the carotid pulsation, which is in the 1–10 Hz bandwidth and is located right next to the gland. In order to decrease the shear wavelength and increase the signal to noise ratio, we propose to create in the thyroid a complex shear wave field by using natural vocal tract vibrations. The nature of the sound can be easily modified to be narrow or broad band, with small or large amplitude. Using correlation-based algorithm and a sound sustained at 150 Hz, we have developed an innovative technique using ultrasound, allowing us to compute a 2D shear wave velocity map, superposed onto a B-mode ultrasound image of a volunteer's thyroid. Using our vocal passive elastography method, shear wave velocity was measured at every point within a mask surrounding the thyroid with a pixel resolution of 150 × 150 μm2. The mean shear wave speed value measured is 3.2 m/s, taking its value from 0.7 m/s to 8.8 m/s. The values obtained were in good agreement with comparative shear wave elastography (SWE) measurements.

1.
H.
Monpeyssen
,
J.
Tramalloni
,
S.
Poirée
,
O.
Hélénon
, and
J.-M.
Correas
, “
Elastography of the thyroid
,”
Diagn. Interventional Imaging
94
,
535
(
2013
).
2.
R.
Rahbari
,
L.
Zhang
, and
E.
Kebebew
, “
Thyroid cancer gender disparity
,”
Future Oncol.
6
,
1771
1779
(
2010
).
3.
L.-J.
Liao
,
H.-W.
Chen
,
W.-L.
Hsu
, and
Y.-S.
Chen
, “
Comparison of strain elastography, shear wave elastography, and conventional ultrasound in diagnosing thyroid nodules
,”
J. Med. Ultrasound
27
,
26
32
(
2019
).
4.
S.
Dudea
and
C.
Botar Jid
, “
Ultrasound elastography in thyroid disease
,”
Med. Ultrasonogr.
17
,
74
96
(
2015
).
5.
M.
Dighe
,
D.
Hippe
, and
J.
Thiel
, “
Artifacts in shear wave elastography images of thyroid nodules
,”
Ultrasound Med. Biol.
44
,
1170
(
2018
).
6.
E.
Fleury
, “
Elastography for the evaluation of thyroid nodules in pediatric patients
,”
Radiol. Bras.
52
,
141
(
2019
).
7.
U.
Bae
,
M.
Dighe
,
V.
Shamdasani
,
S.
Minoshima
,
T.
Dubinsky
, and
Y.
Kim
, “
6F-6 thyroid elastography using carotid artery pulsation: A feasibility study
,” in
Proceedings of the IEEE Ultrasonics Symposium
(
2006
), pp.
614
617
.
8.
T.
Gallot
,
S.
Catheline
,
P.
Roux
,
J.
Brum
,
N.
Benech
, and
C.
Negriera
, “
Passive elastography: Shear-wave tomography from physiological-noise correlation in soft tissues
,”
IEEE Trans. Ultrason., Ferroelectr. Frequency Control
58
,
1122
1126
(
2011
).
9.
K.
Aki
and
B.
Chouet
, “
Origin of coda waves: Source, attenuation and scattering effects
,”
J. Geophys. Res.
80
,
3322
3342
, (
1975
).
10.
M.
Campillo
and
A.
Paul
, “
Long-range correlations in the diffuse seismic coda
,”
Science
299
,
547
549
(
2003
).
11.
N.
Shapiro
and
M.
Campillo
, “
Emergence of broadband Rayleigh waves from correlations of the ambient noise
,”
Geophys. Res. Lett
31
(
7
),
L07614
, (
2004
).
12.
M.
Campillo
, “
Phase and correlation in ‘random’ seismic fields and the reconstruction of the green function
,”
Pure Appl. Geophys.
163
,
475
502
(
2006
).
13.
A.
Hoeks
,
P.
Brands
,
T.
Arts
, and
R.
Reneman
, “
Subsample volume processing of doppler ultrasound signals
,”
Ultrasound Med. Biol.
20
,
953
965
(
1994
).
14.
B.
Giammarinaro
, “
Focusing of shear shock waves in incompressible solids
,” Theses (Université Pierre et Marie Curie - Paris VI,
2016
).
15.
E.
Zabolotskaya
,
M.
Hamilton
,
Y.
Ilinskii
, and
G.
Meegan
, “
Modeling of nonlinear shear waves in soft solids
,”
Acoust. Soc. Am. J.
116
,
2807
2813
(
2004
).
16.
P.
Badin
,
G.
Bailly
,
L.
Reveret
,
M.
Baciu
,
C.
Segebarth
, and
C.
Savariaux
, “
Three-dimensional linear articulatory modeling of tongue, lips and face, based on MRI and video images
,”
J. Phonetics
30
,
533
553
(
2002
).
17.
A.
Zorgani
,
R.
Souchon
,
A.-H.
Dinh
,
J.
Chapelon
,
J.-M.
Ménager
,
S.
Lounis
,
O.
Rouvière
, and
S.
Catheline
, “
Brain palpation from physiological vibrations using MRI
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
12917
(
2015
).
18.
S.
Catheline
, “
Passive elastography: A seismo-inspired tomography of the human body
,”
J. Acoust. Soc. Am.
140
,
3138
3138
(
2016
).
19.
T.
Loupas
,
J.
Powers
, and
R.
Gill
, “
An axial velocity estimator for ultrasound blood-flow imaging, based on a full evaluation of the Doppler equation by means of a 2-dimensional autocorrelation approach
,”
IEEE Trans. Ultrason., Ferroelectr., Frequency Control
42
,
672
688
(
1995
).
20.
S.
Catheline
,
R.
Souchon
,
M.
Rupin
,
J.
Brum
, and
J.
Chapelon
, “
Tomography from diffuse waves: Passive shear wave imaging using low frame rate scanners
,”
Appl. Phys. Lett.
103
,
014101
(
2013
).
21.
M.
Tanter
and
M.
Fink
, “
Ultrafast imaging in biomedical ultrasound
,”
IEEE Trans. Ultrason., Ferroelectr., Frequency Control
61
,
102
119
(
2014
).
22.
J.
Brum
,
M.
Bernal
,
J.-L.
Gennisson
, and
M.
Tanter
, “
In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis
,”
Phys. Med. Biol.
59
,
505
523
(
2014
).
23.
J.-L.
Gennisson
,
M.
Rénier
,
S.
Catheline
,
C.
Barrière
,
J.
Bercoff
,
M.
Tanter
, and
M.
Fink
, “
Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force
,”
J. Acoust. Soc. Am.
122
,
3211
3219
(
2007
).
You do not currently have access to this content.