We investigate the photon-mediated thermal transport between a superconducting electrode and a normal metal. When the quasiparticle contribution can be neglected, the photon-mediated channel becomes an efficient heat transport relaxation process for the superconductor at low temperatures, being larger than the intrinsic contribution due to the electron–phonon interaction. Furthermore, the superconductor–normal metal system acts as a nearly perfect thermal diode, with a rectification factor up to 108 for a realistic aluminum superconductor. The rectification factor can also be tuned in a phase-controlled fashion through a non-galvanic coupling, realized by changing the magnetic flux piercing a superconducting quantum interference device, which modifies the coupling impedance between the superconductor and the normal metal. The scheme can be exploited for passive cooling in superconducting quantum circuits by transferring heat toward normal metallic pads where it dissipates more efficiently or for more general thermal management purposes.

1.
A. G. J.
MacFarlane
,
J. P.
Dowling
, and
G. J.
Milburn
, “
Quantum technology: The second quantum revolution
,”
Philos. Trans. R. Soc. A
361
,
1655
(
2003
).
2.
M. F.
Riedel
,
D.
Binosi
,
R.
Thew
, and
T.
Calarco
, “
The European quantum technologies flagship programme
,”
Quantum Sci. Technol.
2
,
030501
(
2017
).
3.
A.
Acín
,
I.
Bloch
,
H.
Buhrman
,
T.
Calarco
,
C.
Eichler
,
J.
Eisert
,
D.
Esteve
,
N.
Gisin
,
S. J.
Glaser
,
F.
Jelezko
 et al., “
The quantum technologies roadmap: A European community view
,”
New J. Phys.
20
,
080201
(
2018
).
4.
J.
Preskill
, “
Quantum computing and the entanglement frontier
,” arXiv:1203.5813 (
2012
).
5.
A. W.
Harrow
and
A.
Montanaro
, “
Quantum computational supremacy
,”
Nat.
549
,
203
(
2017
).
6.
M. H.
Devoret
and
J. M.
Martinis
, “
Implementing qubits with superconducting integrated circuits
,”
Quantum Inf. Process.
3
,
163
(
2004
).
7.
G.
Wendin
, “
Quantum information processing with superconducting circuits: A review
,”
Rep. Prog. Phys.
80
,
106001
(
2017
).
8.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer's guide to superconducting qubits
,”
Appl. Phys. Rev.
6
,
021318
(
2019
).
9.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G. S. L.
Brandao
,
D. A.
Buell
 et al., “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
(
2019
).
10.
F.
Giazotto
,
T. T.
Heikkilä
,
A.
Luukanen
,
A. M.
Savin
, and
J. P.
Pekola
, “
Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications
,”
Rev. Mod. Phys.
78
,
217
(
2006
).
11.
J. T.
Muhonen
,
M.
Meschke
, and
J. P.
Pekola
, “
Micrometre-scale refrigerators
,”
Rep. Prog. Phys.
75
,
046501
(
2012
).
12.
A. V.
Timofeev
,
C. P.
García
,
N. B.
Kopnin
,
A. M.
Savin
,
M.
Meschke
,
F.
Giazotto
, and
J. P.
Pekola
, “
Recombination-limited energy relaxation in a Bardeen-Cooper-Schrieffer superconductor
,”
Phys. Rev. Lett.
102
,
017003
(
2009
).
13.
V. F.
Maisi
,
S. V.
Lotkhov
,
A.
Kemppinen
,
A.
Heimes
,
J. T.
Muhonen
, and
J. P.
Pekola
, “
Excitation of single quasiparticles in a small superconducting al island connected to normal-metal leads by tunnel junctions
,”
Phys. Rev. Lett.
111
,
147001
(
2013
).
14.
F.
Giazotto
and
M. J.
Martínez-Pérez
, “
The Josephson heat interferometer
,”
Nature
492
,
401
(
2012
).
15.
A.
Fornieri
and
F.
Giazotto
, “
Towards phase-coherent caloritronics in superconducting circuits
,”
Nat. Nanotechnol.
12
,
944
(
2017
).
16.
G. F.
Timossi
,
A.
Fornieri
,
F.
Paolucci
,
C.
Puglia
, and
F.
Giazotto
, “
Phase-tunable Josephson thermal router
,”
Nano Lett.
18
,
1764
1769
(
2018
).
17.
H. Q.
Nguyen
,
M.
Meschke
,
H.
Courtois
, and
J. P.
Pekola
, “
Sub-50-mk electronic cooling with large-area superconducting tunnel junctions
,”
Phys. Rev. Appl.
2
,
054001
(
2014
).
18.
D. R.
Schmidt
,
R. J.
Schoelkopf
, and
A. N.
Cleland
, “
Photon-mediated thermal relaxation of electrons in nanostructures
,”
Phys. Rev. Lett.
93
,
045901
(
2004
).
19.
L. M. A.
Pascal
,
H.
Courtois
, and
F. W. J.
Hekking
, “
Circuit approach to photonic heat transport
,”
Phys. Rev. B
83
,
125113
(
2011
).
20.
M.
Meschke
,
W.
Guichard
, and
J. P.
Pekola
, “
Single-mode heat conduction by photons
,”
Nature
444
,
187
(
2006
).
21.
A. V.
Timofeev
,
M.
Helle
,
M.
Meschke
,
M.
Möttönen
, and
J. P.
Pekola
, “
Electronic refrigeration at the quantum limit
,”
Phys. Rev. Lett.
102
,
200801
(
2009
).
22.
M.
Partanen
,
K. Y.
Tan
,
J.
Govenius
,
R. E.
Lake
,
M. K.
Mäkelä
,
T.
Tanttu
, and
M.
Möttönen
, “
Quantum-limited heat conduction over macroscopic distances
,”
Nat. Phys.
12
,
460
(
2016
).
23.
E. D.
Walsh
,
D. K.
Efetov
,
G.-H.
Lee
,
M.
Heuck
,
J.
Crossno
,
T. A.
Ohki
,
P.
Kim
,
D.
Englund
, and
K. C.
Fong
, “
Graphene-based Josephson-junction single-photon detector
,”
Phys. Rev. Appl.
8
,
024022
(
2017
).
24.
A.
Ronzani
,
B.
Karimi
,
J.
Senior
,
Y.-C.
Chang
,
J. T.
Peltonen
,
C.
Chen
, and
J. P.
Pekola
, “
Tunable photonic heat transport in a quantum heat valve
,”
Nat. Phys.
14
,
991
(
2018
).
25.
O.
Maillet
,
D.
Subero
,
J. T.
Peltonen
,
D. S.
Golubev
, and
J. P.
Pekola
, “
Electric field control of radiative heat transfer in a superconducting circuit
,”
Nat. Commun.
11
,
4326
(
2020
).
26.
J.
Senior
,
A.
Gubaydullin
,
B.
Karimi
,
J. T.
Peltonen
,
J.
Ankerhold
, and
J. P.
Pekola
, “
Heat rectification via a superconducting artificial atom
,”
Commun. Phys.
3
,
40
(
2020
).
27.
G.
Marchegiani
,
P.
Virtanen
,
F.
Giazotto
, and
M.
Campisi
, “
Self-oscillating Josephson quantum heat engine
,”
Phys. Rev. Appl.
6
,
054014
(
2016
).
28.
G.
Marchegiani
,
P.
Virtanen
, and
F.
Giazotto
, “
On-chip cooling by heating with superconducting tunnel junctions
,”
Europhys. Lett.
124
,
48005
(
2018
).
29.
G.
Marchegiani
,
A.
Braggio
, and
F.
Giazotto
, “
Nonlinear thermoelectricity with electron-hole symmetric systems
,”
Phys. Rev. Lett.
124
,
106801
(
2020
).
30.
B.
Scharf
,
A.
Braggio
,
E.
Strambini
,
F.
Giazotto
, and
E. M.
Hankiewicz
, “
Topological Josephson heat engine
,”
Commun. Phys.
3
,
198
(
2020
).
31.
Typical materials are copper (Cu) and aluminum-manganese (AlMn).
32.
T.
Ojanen
and
A.-P.
Jauho
, “
Mesoscopic photon heat transistor
,”
Phys. Rev. Lett.
100
,
155902
(
2008
).
33.
D. C.
Mattis
and
J.
Bardeen
, “
Theory of the anomalous skin effect in normal and superconducting metals
,”
Phys. Rev.
111
,
412
417
(
1958
).
34.
W.
Zimmermann
,
E.
Brandt
,
M.
Bauer
,
E.
Seider
, and
L.
Genzel
, “
Optical conductivity of BCS superconductors with arbitrary purity
,”
Physica C
183
,
99
(
1991
).
35.
U. S.
Pracht
,
E.
Heintze
,
C.
Clauss
,
D.
Hafner
,
R.
Bek
,
D.
Werner
,
S.
Gelhorn
,
M.
Scheffler
,
M.
Dressel
,
D.
Sherman
 et al., “
Electrodynamics of the superconducting state in ultra-thin films at thz frequencies
,”
IEEE Trans Terahertz Sci. Technol.
3
,
269
(
2013
).
36.
T. R.
Lemberger
and
J.
Clarke
, “
Charge-imbalance relaxation in the presence of a pair-breaking supercurrent in dirty, superconducting al films
,”
Phys. Rev. B
23
,
1100
1105
(
1981
).
37.
D.
Seligson
and
J.
Clarke
, “
Phonon-induced enhancement of the energy gap and critical current of superconducting aluminum films
,”
Phys. Rev. B
28
,
6297
6308
(
1983
).
38.
P. C.
van Son
,
J.
Romijn
,
T. M.
Klapwijk
, and
J. E.
Mooij
, “
Inelastic scattering rate for electrons in thin aluminum films determined from the minimum frequency for microwave stimulation of superconductivity
,”
Phys. Rev. B
29
,
1503
1505
(
1984
).
39.
P.
Santhanam
,
S.
Wind
, and
D. E.
Prober
, “
Localization, superconducting fluctuations, and superconductivity in thin films and narrow wires of aluminum
,”
Phys. Rev. B
35
,
3188
3206
(
1987
).
40.
S.-G.
Lee
and
T. R.
Lemberger
, “
Electron-electron scattering and phase fluctuations in superconducting films
,”
Phys. Rev. B
40
,
10831
10841
(
1989
).
41.
The relaxation time reads τrel=l/vF=kFlΔ0/EF/(2Δ0), where l is the mean-free path and vF=2EF/(kF),EF,kF are the Fermi velocity, energy, and wavevector, respectively. For a typical BCS superconductor, Δ0/EF103104 and kFl5 for NbN (see Ref. 35). For Al films, similar values can be computed, where EF=11.6 eV and l=550 (Refs. 36–40) depending on the degree of disorder (our value corresponds to l = 35 nm).
42.
H.
Nyquist
, “
Thermal agitation of electric charge in conductors
,”
Phys. Rev.
32
,
110
113
(
1928
).
43.
In the calculation, we use the integral formula of Refs. 12 and 13, but in the text, we report the approximate expression, which substantially gives the same results in the low-temperature limit considered here.
44.
R.
Bosisio
,
P.
Solinas
,
A.
Braggio
, and
F.
Giazotto
, “
Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors
,”
Phys. Rev. B
93
,
144512
(
2016
).
45.
B.
Pannetier
and
H.
Courtois
, “
Andreev reflection and proximity effect
,”
J. Low Temp. Phys.
118
,
599
(
2000
).
46.
M.
Dressel
, “
Electrodynamics of metallic superconductors
,”
Adv. Condens. Matter Phys.
2013
,
104379
.
47.
K. L.
Viisanen
and
J. P.
Pekola
, “
Anomalous electronic heat capacity of copper nanowires at sub-kelvin temperatures
,”
Phys. Rev. B
97
,
115422
(
2018
).
48.
J.
Bardeen
,
G.
Rickayzen
, and
L.
Tewordt
, “
Theory of the thermal conductivity of superconductors
,”
Phys. Rev.
113
,
982
994
(
1959
).
49.
M. J.
Martínez-Pérez
,
A.
Fornieri
, and
F.
Giazotto
, “
Rectification of electronic heat current by a hybrid thermal diode
,”
Nat. Nanotechnol.
10
,
303
307
(
2015
).
50.
A.
Fornieri
,
M. J.
Martínez-Pérez
, and
F.
Giazotto
, “
A normal metal tunnel-junction heat diode
,”
Appl. Phys. Lett.
104
,
183108
(
2014
).
51.
M.
Martínez-Pérez
and
F.
Giazotto
, “
Efficient phase-tunable Josephson thermal rectifier
,”
Appl. Phys. Lett.
102
,
182602
(
2013
).
52.
F.
Giazotto
and
F. S.
Bergeret
, “
Thermal rectification of electrons in hybrid normal metal-superconductor nanojunctions
,”
Appl. Phys. Lett.
103
,
242602
(
2013
).
53.
J.
Ren
and
J.-X.
Zhu
, “
Anomalous energy transport across topological insulator superconductor junctions
,”
Phys. Rev. B
87
,
165121
(
2013
).
54.
J.
Ren
and
J.-X.
Zhu
, “
Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces
,”
Phys. Rev. B
87
,
241412
(
2013
).
55.
B.
Li
,
L.
Wang
, and
G.
Casati
, “
Thermal diode: Rectification of heat flux
,”
Phys. Rev. Lett.
93
,
184301
(
2004
).
56.
L.-A.
Wu
and
D.
Segal
, “
Sufficient conditions for thermal rectification in hybrid quantum structures
,”
Phys. Rev. Lett.
102
,
095503
(
2009
).
57.
N.
Li
,
J.
Ren
,
L.
Wang
,
G.
Zhang
,
P.
Hänggi
, and
B.
Li
, “
Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond
,”
Rev. Mod. Phys.
84
,
1045
1066
(
2012
).
58.
N.
Roberts
and
D.
Walker
, “
A review of thermal rectification observations and models in solid materials
,”
Int. J. Therm. Sci.
50
,
648
(
2011
).
59.
G.
Wehmeyer
,
T.
Yabuki
,
C.
Monachon
,
J.
Wu
, and
C.
Dames
, “
Thermal diodes, regulators, and switches: Physical mechanisms and potential applications
,”
Appl. Phys. Rev.
4
,
041304
(
2017
).
60.
The rectification is trivially zero in the absence of a temperature gradient, i.e. TS = TN, where Q̇f=Q̇r=0.
61.
F.
Giazotto
and
F. S.
Bergeret
, “
Very large thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions
,”
Appl. Phys. Lett.
116
,
192601
(
2020
).
62.
R.
Scheibner
,
M.
König
,
D.
Reuter
,
A. D.
Wieck
,
C.
Gould
,
H.
Buhmann
, and
L. W.
Molenkamp
, “
Quantum dot as thermal rectifier
,”
New J. Phys.
10
,
083016
(
2008
).
63.
W.
Kobayashi
,
Y.
Teraoka
, and
I.
Terasaki
, “
An oxide thermal rectifier
,”
Appl. Phys. Lett.
95
,
171905
(
2009
).
64.
H.
Tian
,
D.
Xie
,
Y.
Yang
,
T.-L.
Ren
,
G.
Zhang
,
Y.-F.
Wang
,
C.-J.
Zhou
,
P.-G.
Peng
,
L.-G.
Wang
, and
L.-T.
Liu
, “
A novel solid-state thermal rectifier based on reduced graphene oxide
,”
Sci. Rep.
2
,
523
(
2012
).
65.
C. R.
Otey
,
W. T.
Lau
, and
S.
Fan
, “
Thermal rectification through vacuum
,”
Phys. Rev. Lett.
104
,
154301
(
2010
).
66.
P.
Ben-Abdallah
and
S.-A.
Biehs
, “
Phase-change radiative thermal diode
,”
Appl. Phys. Lett.
103
,
191907
(
2013
).
67.
E.
Nefzaoui
,
K.
Joulain
,
J.
Drevillon
, and
Y.
Ezzahri
, “
Radiative thermal rectification using superconducting materials
,”
Appl. Phys. Lett.
104
,
103905
(
2014
).
68.
B.
Song
,
A.
Fiorino
,
E.
Meyhofer
, and
P.
Reddy
, “
Near-field radiative thermal transport: From theory to experiment
,”
AIP Adv.
5
,
053503
(
2015
).
69.
J.
Ordonez-Miranda
,
K.
Joulain
,
D.
De Sousa Meneses
,
Y.
Ezzahri
, and
J.
Drevillon
, “
Photonic thermal diode based on superconductors
,”
J. Appl. Phys.
122
,
093105
(
2017
).
70.
J. C.
Cuevas
and
F. J.
García-Vidal
, “
Radiative heat transfer
,”
ACS Photonics
5
,
3896
(
2018
).
71.
A.
Ott
,
R.
Messina
,
P.
Ben-Abdallah
, and
S.-A.
Biehs
, “
Radiative thermal diode driven by nonreciprocal surface waves
,”
Appl. Phys. Lett.
114
,
163105
(
2019
).
72.
A.
Fiorino
,
D.
Thompson
,
L.
Zhu
,
R.
Mittapally
,
S.-A.
Biehs
,
O.
Bezencenet
,
N.
El-Bondry
,
S.
Bansropun
,
P.
Ben-Abdallah
,
E.
Meyhofer
, and
P.
Reddy
, “
A thermal diode based on nanoscale thermal radiation
,”
ACS Nano
12
,
5774
(
2018
).
73.
A.
Barone
and
G.
Paternò
,
Physics and Applications of the Josephson Effect
(
Wiley
,
New York
,
1982
).
74.
J.
Clarke
and
A.
Braginski
,
The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems
(
Wiley-VCH
,
Weinheim
,
2004
).
75.
F.
Paolucci
,
G.
Timossi
,
P.
Solinas
, and
F.
Giazotto
, “
Coherent manipulation of thermal transport by tunable electron-photon and electron-phonon interaction
,”
J. Appl. Phys.
121
,
244305
(
2017
).
You do not currently have access to this content.