We demonstrate herein the fabrication and operation of p-type GaN Schottky barrier diodes (SBDs) with nearly ideal rectifying characteristics using vertical bottom tunneling junction contacts. The interface between Ni and p-type GaN provides a large Schottky barrier height of 2.29 eV, which is promising for high-temperature operations. The vertical p-type GaN SBDs show nearly ideal rectifying characteristics with an ideality factor close to unity and a rectifying ratio as high as 106, even at 600 K. This distinguished performance indicates the superiority of p-type GaN SBDs for electron devices operated under high-temperature environments.

1.
C.
Van de Walle
and
J.
Neugebauer
,
Nature
423
,
626
628
(
2003
).
2.
H. B.
Michaelson
,
IBM J. Res. Dev.
22
,
72
(
1978
).
3.
J. I.
Pankove
and
H.
Schade
,
Appl. Phys. Lett.
25
,
53
(
1974
).
4.
Y. G.
Chen
,
M.
Ogura
, and
H.
Okushi
,
Appl. Phys. Lett.
82
,
4367
(
2003
).
5.
S.-K.
Lee
,
G.-M.
Zetterling
, and
M.
Östling
,
J. Electron. Mater.
30
,
242
(
2001
).
6.
Y.
Saitoh
,
K.
Sumiyoshi
,
M.
Okada
,
T.
Horii
,
T.
Miyazaki
,
H.
Shiomi
,
M.
Ueno
,
K.
Katayama
,
M.
Kiyama
, and
T.
Nakamura
,
Appl. Phys. Express
3
,
081001
(
2010
).
7.
T.
Maeda
,
M.
Okada
,
M.
Ueno
,
Y.
Yamamoto
,
T.
Kimoto
,
M.
Horita
, and
J.
Suda
,
Appl. Phys. Express
10
,
051002
(
2017
).
8.
X. A.
Cao
,
S. J.
Pearton
,
G.
Dang
,
A. P.
Zhang
,
F.
Ren
, and
J. M.
Van Hove
,
Appl. Phys. Lett.
75
,
4130
(
1999
).
9.
T.
Mori
,
T.
Kozawa
,
T.
Ohwaki
,
Y.
Taga
,
S.
Nagai
,
S.
Yamasaki
,
S.
Asami
,
N.
Shibata
, and
M.
Koike
,
Appl. Phys. Lett.
69
,
3537
(
1996
).
10.
K.
Shiojima
,
T.
Sugahara
, and
S.
Sakai
,
Appl. Phys. Lett.
74
,
1936
(
1999
).
11.
L. S.
Yu
,
D.
Qiao
,
L.
Jia
,
S. S.
Lau
,
Y.
Qi
, and
K. M.
Lau
,
Appl. Phys. Lett.
79
,
4536
(
2001
).
12.
Y. J.
Lin
,
Appl. Phys. Lett.
86
,
122109
(
2005
).
13.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
New Jersey
,
2007
).
14.
M.
Suzuki
and
T.
Uenoyama
,
Jpn. J. Appl. Phys., Part 1
34
,
3442
(
1995
).
15.
Y.
Ohba
and
A.
Hatano
,
J. Cryst. Growth
145
,
214
(
1994
).
16.
K.
Sato
,
J.
Ohta
,
S.
Inoue
,
A.
Kobayashi
, and
H.
Fujioka
,
Appl. Phys. Express
2
,
011003
(
2009
).
17.
Y.
Arakawa
,
K.
Ueno
,
A.
Kobayashi
,
J.
Ohta
, and
H.
Fujioka
,
APL Mater.
4
,
086103
(
2016
).
18.
T.
Fudetani
,
K.
Ueno
,
A.
Kobayashi
, and
H.
Fujioka
,
Appl. Phys. Lett.
114
,
032102
(
2019
).
19.
K.
Ueno
,
A.
Kobayashi
, and
H.
Fujioka
,
AIP Adv.
9
,
075123
(
2019
).
20.
Y.
Arakawa
,
K.
Ueno
,
A.
Kobayashi
,
J.
Ohta
, and
H.
Fujioka
,
Appl. Phys. Lett.
110
,
042103
(
2017
).
21.
M.
Schmeits
,
N. D.
Nguyen
, and
M.
Germain
,
J. Appl. Phys.
89
,
1890
(
2001
).
22.
G.
Greco
,
F.
Iucolano
,
F.
Giannazzo
,
S. D.
Franco
,
D.
Corso
,
E.
Smecca
,
A.
Alberti
,
A.
Patti
, and
F.
Roccaforte
,
Mater. Sci. Forum
858
,
1170
(
2016
).
23.
T.
Narita
,
K.
Tomita
,
Y.
Tokuda
,
T.
Kogiso
,
M.
Horita
, and
T.
Kachi
,
J. Appl. Phys.
124
,
215701
(
2018
).
24.
C.-H.
Su
,
W.
Palosz
,
S.
Shu
,
S. L.
Lehoczky
,
I.
Grzegory
,
P.
Perlin
, and
T.
Suski
,
J. Cryst. Growth
235
,
111
(
2002
).
25.
G. A.
Slack
,
J. Phys. Chem. Solids
34
,
321
(
1973
).
26.
J.
Suda
,
K.
Yamaji
,
Y.
Hayashi
,
T.
Kimoto
,
K.
Shimoyama
,
H.
Namito
, and
S.
Nagao
,
Appl. Phys. Express
3
,
101003
(
2010
).
27.
T.
Sawada
,
Y.
Izumi
,
N.
Kimura
,
K.
Suzuki
,
K.
Imai
,
S.-W.
Kim
, and
T.
Suzuki
,
Appl. Surf. Sci.
216
,
192
(
2003
).
28.
Y.
Park
,
K.-S.
Ahn
, and
H.
Kim
,
Jpn. J. Appl. Phys., Part 1
51
,
09MK01
(
2012
).
29.
Y.
Koide
,
H.
Ishikawa
,
S.
Kobayashi
,
S.
Yamasaki
,
S.
Nagai
,
J.
Umezaki
,
M.
Koike
, and
M.
Murakami
,
Appl. Surf. Sci.
117–118
,
373
(
1997
).
You do not currently have access to this content.