The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, TCDW. However, it is often difficult to use conventional methods to study the phase transition in these systems due to their small size and sensitivity to degradation. Degradation is an important parameter, which has been shown to greatly influence the superconductivity in layered systems. Since the CDW state competes with the onset of superconductivity, it is expected that TCDW will also be affected by the degradation. Here, we probe the CDW phase transition by the mechanical resonances of suspended 2H-TaS2 and 2H-TaSe2 membranes and study the effect of disorder on the CDW state. Pristine flakes show the transition near the reported values of 75 K and 122 K, respectively. We then study the effect of degradation on 2H-TaS2, which displays an enhancement of TCDW up to 129 K after degradation in ambient air. Finally, we study a sample with local degradation and observe that multiple phase transitions occur at 87 K, 103 K, and 118 K with a hysteresis in temperature in the same membrane. The observed spatial variations in the Raman spectra suggest that variations in crystal structure cause domains with different transition temperatures, which could result in the hysteresis. This work shows the potential of using nanomechanical resonance to characterize the CDW in suspended 2D materials and demonstrates that the degradation can have a large effect on transition temperatures.

1.
J. A.
Wilson
,
F. D.
Salvo
, and
S.
Mahajan
, “
Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides
,”
Adv. Phys.
24
(
2
),
117
201
(
1975
).
2.
J. C.
Tsang
,
J. E.
Smith
, Jr.
, and
M. W.
Shafer
, “
Raman spectroscopy of soft modes at the charge-density-wave phase transition in 2H-NbSe2
,”
Phys. Rev. Lett.
37
(
21
),
1407
(
1976
).
3.
S.
Sugai
, “
Lattice vibrations in the charge-density-wave states of layered transition metal dichalcogenides
,”
Phys. Status Solidi B
129
(
1
),
13
39
(
1985
).
4.
S.
Sugai
,
K.
Murase
,
S.
Uchida
, and
S.
Tanaka
, “
Studies of lattice dynamics in 2H-TaS2 by Raman scattering
,”
Solid State Commun.
40
(
4
),
399
401
(
1981
).
5.
J. M. E.
Harper
,
T. H.
Geballe
, and
F. J.
Di Salvo
, “
Heat capacity of 2H-NbSe2 at the charge density wave transition
,”
Phys. Lett. A
54
(
1
),
27
28
(
1975
).
6.
R. A.
Craven
and
S. F.
Meyer
, “
Specific heat and resistivity near the charge-density-wave phase transitions in 2H-TaSe2 and 2H-TaS2
,”
Phys. Rev. B
16
(
10
),
4583
(
1977
).
7.
R.
Delaplace
,
P.
Molinie
, and
D.
Jerome
, “
On the pressure dependence of a charge density wave state in 2H-TaS2
,”
J. Phys. Lett.
37
(
1
),
13
15
(
1976
).
8.
T. M.
Rice
and
G. K.
Scott
, “
New mechanism for a charge density wave instability
,”
Phys. Rev. Lett.
35
(
2
),
120
(
1975
).
9.
G.
Campagnoli
,
A.
Gustinetti
,
A.
Stella
, and
E.
Tosatti
, “
Plasmon behavior at the charge density wave onset in 2H-TaSe2
,”
Phys. Rev. B
20
(
6
),
2217
(
1979
).
10.
E. F.
Steigmeier
,
G.
Harbeke
,
H.
Auderset
, and
F. J.
Di Salvo
, “
Softening of charge density wave excitations at the superstructure transition in 2H-TaSe2
,”
Solid State Commun.
20
(
7
),
667
671
(
1976
).
11.
J. C.
Tsang
,
J. E. J.
Smith
,
M. W.
Shafer
, and
S. F.
Meyer
, “
Raman spectroscopy of the charge-density-wave state in 1T-and 2H-TaSe2
,”
Phys. Rev. B
16
(
4239
),
4239
(
1977
).
12.
W. L.
McMillan
, “
Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition
,”
Phys. Rev. B
14
(
4
),
1496
(
1976
).
13.
D. E.
Moncton
,
J. D.
Axe
, and
F. J.
Di Salvo
, “
Neutron scattering study of the charge density wave transitions in 2H-TaSe2 and 2H-NbSe2
,”
Phys. Rev. B
16
(
2
),
801
(
1977
).
14.
J. A.
Wilson
, “
Questions concerning the form taken by the charge density wave and the accompanying periodic structural distortions in 2H-TaSe2 and closely related materials
,”
Phys. Rev. B
17
(
10
),
3880
(
1978
).
15.
X.
Xi
,
L.
Zhao
,
Z.
Wang
,
H.
Berger
,
L.
Forró
,
J.
Shan
, and
K. F.
Mak
, “
Strongly enhanced charge-density-wave order in monolayer NbSe2
,”
Nat. Nanotechnol.
10
(
9
),
765
769
(
2015
).
16.
C.
Sergio
,
M. R.
Sinko
,
D. P.
Gopalan
,
N.
Sivadas
,
K. L.
Seyler
,
K.
Watanabe
,
T.
Taniguchi
,
A. W.
Tsen
,
X.
Xu
,
D.
Xiao
, and
B. M.
Hunt
, “
Tuning ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
,”
Nat. Commun.
9
(
1
),
1427
(
2018
).
17.
E.
Navarro-Moratalla
,
J. O.
Island
,
S.
Manas-Valero
,
E.
Pinilla-Cienfuegos
,
A.
Castellanos-Gomez
,
J.
Quereda
,
G.
Rubio-Bollinger
,
L.
Chirolli
,
J. A.
Silva-Guillén
,
N.
Agraït
,
G. A.
Steele
,
F.
Guinea
,
H. S. J.
van der Zant
, and
E.
Coronado
, “
Enhanced superconductivity in atomically thin TaS2
,”
Nat. Commun.
7
(
1
),
11043
(
2016
).
18.
D.
Zhang
,
Y.
Wu
,
Y.-H.
Su
,
M.-C.
Hsu
,
C.
Ó Coileáin
,
J.
Cho
,
M.
Choi
,
B. S.
Chun
,
Y.
Guo
,
C.-R.
Chang
, and
H.-C.
Wu
, “
Charge density waves and degenerate modes in exfoliated monolayer 2H-TaS2
,”
IUCrJ
7
(
5
),
913
919
(
2020
).
19.
Y.
Wu
,
J.
He
,
J.
Liu
,
H.
Xing
,
Z.
Mao
, and
Y.
Liu
, “
Dimensional reduction and ionic gating induced enhancement of superconductivity in atomically thin crystals of 2H-TaSe2
,”
Nanotechnology
30
(
3
),
035702
(
2019
).
20.
J.
Bekaert
,
E.
Khestanova
,
D. G.
Hopkinson
,
J.
Birkbeck
,
N.
Clark
,
M.
Zhu
,
D. A.
Bandurin
,
R.
Gorbachev
,
S.
Fairclough
,
Y.
Zou
,
M.
Hamer
,
D. J.
Terry
,
J. J. P.
Peters
,
A. M.
Sanchez
,
B.
Partoens
,
S. J.
Haigh
,
V.
Milošević
,
V.
Milorad
, and
I.
Grigorieva
, “
Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation
,”
Nano Lett.
20
(
5
),
3808
3818
(
2020
).
21.
R.
Yang
,
W.
Luo
,
S.
Chi
,
D.
Bonn
, and
G. M.
Xia
, “
The stability of exfolicated FeSe nanosheets during in-air device fabrication processes
,”
IEEE Trans. Nanotechnol.
18
,
37
41
(
2019
).
22.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci.
102
(
30
),
10451
10453
(
2005
).
23.
L. J.
Sandilands
,
A. A.
Reijnders
,
A. H.
Su
,
V.
Baydina
,
Z.
Xu
,
A.
Yang
,
G.
Gu
,
T.
Pedersen
,
F.
Borondics
, and
K. S.
Burch
, “
Origin of the insulating state in exfoliated high-Tc two-dimensional atomic crystals
,”
Phys. Rev. B
90
(
8
),
081402
(
2014
).
24.
Y.
Yu
,
L.
Ma
,
P.
Cai
,
R.
Zhong
,
C.
Ye
,
J.
Shen
,
G. D.
Gu
,
X. H.
Chen
, and
Y.
Zhang
, “
High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ
,”
Nature
575
(
7781
),
156
163
(
2019
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics
, Statistical Physics Vol. 5 (
Pergamon Press
,
1968
).
26.
E. B.
Nyeanchi
,
D. F.
Brewer
,
T. E.
Hargreaves
,
A. L.
Thomson
,
C.
Liezhao
, and
C.
Zhao-Jia
, “
The specific heat of BSCCO (2201) single crystal at low temperatures
,”
Physica C: Supercond.
235
,
1755
1756
(
1994
).
27.
Y.
Takano
,
N.
Arai
,
A.
Arai
,
Y.
Takahashi
,
K.
Takase
, and
K.
Sekizawa
, “
Magnetic properties and specific heat of MPS3 (M = Mn, Fe, Zn)
,”
J. Magn. Magn. Mater.
272–276
,
E593
E595
(
2004
).
28.
L. R.
Testardi
, “
Elastic modulus, thermal expansion and specific heat at a phase transition
,”
Phys. Rev. B
12
(
9
),
3849
(
1975
).
29.
J. W.
Loram
,
J. L.
Tallon
, and
W. Y.
Liang
, “
Absence of gross static inhomogeneity in cuprate superconductors
,”
Phys. Rev. B
69
(
6
),
060502
(
2004
).
30.
S. V.
Grabovsky
,
I. V.
Shnaidshtein
,
M.
Takesada
,
A.
Onodera
, and
B. A.
Strukov
, “
Calorimetric study of ferroelectric BaTiO3 in cubic phase
,”
J. Adv. Dielectr.
3
(
4
),
1350032
(
2013
).
31.
M.
Šiškins
,
M.
Lee
,
S.
Mañas-Valero
,
E.
Coronado
,
Y. M.
Blanter
,
H. S.
van der Zant
, and
P. G.
Steeneken
, “
Magnetic and electronic phase transitions probed by nanomechanical resonators
,”
Nat. Commun.
11
(
1
),
2698
(
2020
).
32.
D.
Davidovikj
,
D. J.
Groenendijk
,
A. M. R.
Monteiro
,
A.
Dijkhoff
,
D.
Afanasiev
,
M.
Šiškins
,
M.
Lee
,
Y.
Huang
,
E.
van Heumen
,
H. S. J.
van der Zant
,
A. D.
Caviglia
, and
P. G.
Steeneken
, “
Ultrathin complex oxide nanomechanical resonators
,”
Commun. Phys.
3
(
1
),
163
(
2020
).
33.
S.
Jiang
,
H.
Xie
,
J.
Shan
, and
K. F.
Mak
, “
Exchange magnetostriction in two-dimensional antiferromagnets
,”
Nat. Mater.
19
(
12
),
1295
1299
(
2020
).
34.
S.
Sengupta
,
H. S.
Solanki
,
V.
Singh
,
S.
Dhara
, and
M. M.
Deshmukh
, “
Electromechanical resonators as probes of the charge density wave transition at the nanoscale in NbSe2
,”
Phys. Rev. B
82
(
15
),
155432
(
2010
).
35.
A.
Castellanos-Gomez
,
M.
Buscema
,
R.
Molenaar
,
V.
Singh
,
L.
Janssen
,
H.
S. Van Der Zant
, and
G. A.
Steele
, “
Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping
,”
2D Mater.
1
(
1
),
011002
(
2014
).
36.
D. C.
Freitas
,
P.
Rodière
,
M. R.
Osorio
,
E.
Navarro-Moratalla
,
N. M.
Nemes
,
V. G.
Tissen
,
L.
Cario
,
E.
Coronado
,
M.
García-Hernández
,
S.
Vieira
,
M.
Núñez Regueiro
, and
H.
Suderow
, “
Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS2 and 2H-TaSe2
,”
Phys. Rev. B
93
(
18
),
184512
(
2016
).
37.
M.
Saint-Paul
and
P.
Monceau
, “
Survey of the thermodynamic properties of the charge density wave systems
,”
Adv. Condens. Matter Phys.
2019
,
1
.
38.
G. K.
White
,
J. A.
Birch
, and
M. H.
Manghnani
, “
Thermal properties of sodium silicate glasses at low temperatures
,”
J. Non-Cryst. Solids
23
(
1
),
99
110
(
1977
).
39.
K. G.
Lyon
,
G. L.
Salinger
,
C. A.
Swenson
, and
G. K.
White
, “
Linear thermal expansion measurements on silicon from 6 to 340 K
,”
J. Appl. Phys.
48
(
3
),
865
868
(
1977
).
40.
M.
Barmatz
,
L. R.
Testardi
, and
F. J.
Di Salvo
, “
Elasticity measurements in the layered dichalcogenides TaSe2 and NbSe2
,”
Phys. Rev. B
12
(
10
),
4367
(
1975
).
41.
D.
Lin
,
S.
Li
,
J.
Wen
,
H.
Berger
,
L.
Forró
,
H.
Zhou
,
S.
Jia
,
T.
Taniguchi
,
K.
Watanabe
,
X.
Xi
, and
M. S.
Bahramy
, “
Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides
,”
Nat. Commun.
11
(
1
),
2406
(
2020
).
42.
J. W.
Jiang
and
Y. P.
Zhou
, “
Parameterization of stillinger-weber potential for two-dimensional atomic crystals
,” arXiv:1704.03147 (
2017
).
43.
J.
Kang
,
S.
Tongay
,
J.
Zhou
,
J.
Li
, and
J.
Wu
, “
Band offsets and heterostructures of two-dimensional semiconductors
,”
Appl. Phys. Lett.
102
(
1
),
012111
(
2013
).
44.
D. S.
Sanditov
and
V. N.
Belomestnykh
, “
Relation between the parameters of the elasticity theory and averaged bulk modulus of solids
,”
Tech. Phys.
56
(
11
),
1619
1623
(
2011
).
45.
T.
Middelmann
,
A.
Walkov
,
G.
Bartl
, and
R.
Schödel
, “
Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K
,”
Phys. Rev. B
92
(
17
),
174113
(
2015
).
46.
F.
Hao
,
X.
Liao
,
M.
Li
,
H.
Xiao
, and
X.
Chen
, “
Oxidation-induced negative Poisson's ratio of phosphorene
,”
J. Phys.: Condens. Matter
30
(
31
),
315302
(
2018
).
47.
A.
Falin
,
M.
Holwill
,
H.
Lv
,
W.
Gan
,
J.
Cheng
,
R.
Zhang
,
D.
Qian
,
M. R.
Barnett
,
E. J.
Santos
,
K. S.
Novoselov
, and
T.
Tao
, “
Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2
,”
ACS Nano
15
(
2
),
2600
2610
(
2021
).
48.
Q.
Li
,
Q.
Zhou
,
L.
Shi
,
Q.
Chen
, and
J.
Wang
, “
Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies
,”
J. Mater. Chem. A
7
(
9
),
4291
4312
(
2019
).
49.
M. T.
Lavik
,
T. M.
Medved
, and
G. D.
Moore
, “
Oxidation characteristics of MoS2 and other solid lubricants
,”
ASLE Trans.
11
(
1
),
44
55
(
1968
).
50.
S. J.
Cartamil-Bueno
,
P. G.
Steeneken
,
F. D.
Tichelaar
,
E.
Navarro-Moratalla
,
W. J.
Venstra
,
R.
van Leeuwen
,
E.
Coronado
,
H. S.
van der Zant
,
G. A.
Steele
, and
A.
Castellanos-Gomez
, “
High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2
,”
Nano Res.
8
(
9
),
2842
2849
(
2015
).
51.
I. E.
Rosłoń
,
R. J.
Dolleman
,
H.
Licona
,
M.
Lee
,
M.
Šiškins
,
H.
Lebius
,
L.
Madauß
,
M.
Schleberger
,
F.
Alijani
,
H. S. J.
van der Zant
, and
P. G.
Steeneken
, “
High-frequency gas effusion through nanopores in suspended graphene
,”
Nat. Commun.
11
(
1
),
6025
(
2020
).
52.
K.
Zhang
,
Z.-Y.
Cao
, and
X.-J.
Chen
, “
Effects of charge-density-wave phase transition on electrical transport and Raman spectra in 2H-tantalum disulfide
,”
Appl. Phys. Lett.
114
(
14
),
141901
(
2019
).
53.
P.
Hajiyev
,
C.
Cong
,
C.
Qiu
, and
T.
Yu
, “
Contrast and Raman spectroscopy study of single-and few-layered charge density wave material: 2H-TaSe2
,”
Sci. Rep.
3
(
1
),
1
6
(
2013
).
54.
J.
Joshi
,
H. M.
Hill
,
S.
Chowdhury
,
C. D.
Malliakas
,
F.
Tavazza
,
U.
Chatterjee
,
A. R. H.
Walker
, and
P. M.
Vora
, “
Short-range charge density wave order in 2H-TaS2
,”
Phys. Rev. B
99
(
24
),
245144
(
2019
).
55.
J.
Pandey
and
A.
Soni
, “
Electron-phonon interactions and two-phonon modes associated with charge density wave in single crystalline 1T-VSe2
,”
Phys. Rev. Res.
2
(
3
),
033118
(
2020
).
56.
M.
Klein
, “
Theory of two-phonon Raman scattering in transition metals and compounds
,”
Phys. Rev. B
24
(
8
),
4208
(
1981
).
57.
M.
Lee
,
M.
Šiškins
,
S.
Mañas-Valero
,
E.
Coronado
,
P. G.
Steeneken
, and
H. S. J.
van der Zant
(
2021
). “Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2 by nanomechanical resonance,”
Zenodo
.

Supplementary Material

You do not currently have access to this content.