HfO2-based ferroelectrics are considered a promising class of materials for logic and memory applications due to their CMOS compatibility and ferroelectric figures of merit. A steep-slope field-effect-transistor (FET) switch is a device for logic applications in which a ferroelectric gate stack exploits a stabilized negative capacitance regime capable to differentially amplify the surface potential in a metal–oxide–semiconductor FET structure, resulting in the improvement of the subthreshold swing and overdrive. In a number of relevant studies of negative capacitance, intrinsic (thermodynamic) switching is assumed, since alternative switching scenarios predict undesirable hysteretic responses in logic devices. However, there is little support from the experimental data showing that the polarization reversal in HfO2-based ferroelectrics is really driven by the intrinsic switching mechanism. In this work, polarization hysteresis loops are measured over wide temperature ranges on polycrystalline Si-doped HfO2 (Si:HfO2) capacitors. The analysis herein, which is based on the classic Landau–Ginzburg–Devonshire theory, yields the temperature-dependent dielectric susceptibility values, which fit the Curie–Weiss law. The extrapolated Curie temperature value is in line with the data obtained for other HfO2-based ferroelectrics using different techniques. The work also illustrates a method to evaluate the ferroelectric equivalent negative capacitance value and range of voltages, aiming at study and optimization of a stabilized negative capacitance FET. This study indicates that the intrinsic switching provides an adequate description of the polarization hysteresis in Si:HfO2 films. This confirms the usability of hafnia-based ferroelectrics for negative capacitance logic devices, and the important role that the intrinsic mechanism plays in the dielectric response of these materials.

1.
S.
Salahuddin
and
S.
Datta
, “
Use of negative capacitance to provide voltage amplification for low power nanoscale devices
,”
Nano Lett.
8
(
2
),
405
410
(
2008
).
2.
G. A.
Salvatore
,
D.
Bouvet
, and
A. M.
Ionescu
, “
Demonstration of subthreshold swing smaller than 60 mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack
,” in
Technical Digest-International Electron Devices Meeting (IEDM)
(
2008
), pp.
1
4
.
3.
A.
Saeidi
,
F.
Jazaeri
,
F.
Bellando
 et al, “
Negative capacitance field effect transistors; capacitance matching and non-hysteretic operation
,” in European Solid-State Device Research Conference (
2017
), pp.
78
81
.
4.
A. I.
Khan
,
M.
Hoffmann
,
K.
Chatterjee
 et al, “
Differential voltage amplification from ferroelectric negative capacitance
,”
Appl. Phys. Lett.
111
,
253501
(
2017
).
5.
M.
Hoffmann
,
F. P. G.
Fengler
,
M.
Herzig
 et al, “
Unveiling the double-well energy landscape in a ferroelectric layer
,”
Nature
565
,
464
(
2019
).
6.
C.
Gastaldi
,
A.
Saeidi
,
M.
Cavalieri
 et al, “
Transient negative capacitance of silicon-doped HfO2 in MFMIS and MFIS structures: Experimental insights for hysteresis-free steep slope NC FETs
,” in
IEEE International Electron Devices Meeting
(
2019
), Vol.
8
, pp.
562
565
.
7.
A.
Saeidi
,
F.
Jazaeri
,
I.
Stolichnov
 et al, “
Double-gate negative-capacitance MOSFET with PZT gate-stack on ultrathin body SOI: An experimentally calibrated simulation study of device performance
,”
IEEE Trans. Electron Devices
63
,
4678
(
2016
).
8.
S.-C.
Chang
,
U. E.
Avci
,
D. E.
Nikonov
 et al, “
A thermodynamic perspective of negative-capacitance field-effect-transistors
,”
IEEE J. Explor. Solid-State Comput. Devices Circuits
3
,
56
64
(
2017
).
9.
H.
Mulaosmanovic
,
J.
Ocker
,
S.
Müller
 et al, “
Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors
,”
ACS Appl. Mater. Interfaces
9
(
4
),
3792
3798
(
2017
).
10.
A. G. P.
Buragohain
,
C.
Richter
,
T.
Schenk
 et al, “
Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors
,”
Appl. Phys. Lett.
112
,
222901
(
2018
).
11.
T. S.
Böescke
,
J.
Müller
,
D.
Bräuhaus
 et al, “
Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors
,” in
Technical Digest-International Electron Devices Meeting (IEDM)
(
2011
), pp.
547
550
.
12.
A.
Saeidi
,
T.
Rosca
,
E.
Memisevic
 et al, “
Nanowire tunnel FET with simultaneously reduced subthermionic subthreshold swing and off-current due to negative capacitance and voltage pinning effects
,”
Nano Lett.
20
(
5
),
3255
3262
(
2020
).
13.
K.
Florent
,
M.
Pesic
,
A.
Subirats
 et al, “
Vertical ferroelectric HfO2 FET based on 3D NAND architecture: Towards dense low-power memory
,” in
Technical Digest-International Electron Devices Meeting (IEDM)
(
2019
), Vol.
2018
, pp.
2.5.1
2.5.4
.
14.
Q.
Luo
,
Y.
Cheng
,
J.
Yang
 et al, “
A highly CMOS compatible hafnia-based ferroelectric diode
,”
Nat. Commun.
11
,
1391
(
2020
).
15.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
 et al, “
Ferroelectricity in hafnium oxide thin films
,”
Appl. Phys. Lett.
99
(
10
),
102903
102903
(
2011
).
16.
P. D.
Lomenzo
,
Q.
Takmeel
,
S.
Moghaddam
 et al, “
Annealing behavior of ferroelectric Si-doped HfO2 thin films
,”
Thin Solid Films
615
,
139
144
(
2016
).
17.
I.
Stolichnov
,
M.
Cavalieri
,
E.
Colla
 et al, “
Genuinely ferroelectric sub-1-volt-switchable nanodomains in HfxZr(1-x)O2 ultrathin capacitors
,”
ACS Appl. Mater. Interfaces
10
(
36
),
30514
30521
(
2018
).
18.
I.
Stolichnov
,
M.
Cavalieri
,
C.
Gastaldi
 et al, “
Intrinsic or nucleation-driven switching: An insight from nanoscopic analysis of negative capacitance HfZrO2-based structures
,”
Appl. Phys. Lett.
117
,
172902
(
2020
).
19.
D.
Damjanovic
, “
Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics
,”
Rep. Prog. Phys.
61
,
1267
(
1998
).
20.
D.
Ricinschi
,
C.
Harnagea
,
C.
Papusoi
 et al, “
Analysis of ferroelectric switching in finite media as a Landau-type phase transition
,”
J. Phys.
10
(
2
),
477
492
(
1998
).
21.
T.
Shimizu
,
K.
Kata
,
T.
Kiguchi
 et al, “
The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film
,”
Sci. Rep.
6
,
32931
(
2016
).
22.
T.
Nishimura
,
L.
Xu
,
S.
Shibayama
 et al, “
Ferroelectricity of nondoped thin HfO2 films in TiN/HfO2/TiN stacks
,”
Jpn. J. Appl. Phys., Part 1
55
,
08PB01
(
2016
).
23.
T.
Mimura
,
T.
Shimizu
,
Y.
Katsuya
 et al, “
Thickness and orientation dependences of Curie temperature in ferroelectric epitaxial Y doped HfO2 films
,”
Jpn. J. Appl. Phys., Part 1
59
,
SGGB04
(
2020
).
You do not currently have access to this content.