Magnetic skyrmions are exciting candidates for energy-efficient computing due to their nonvolatility, detectability, and mobility. A recent proposal within the paradigm of reversible computing enables large-scale circuits composed of directly cascaded skyrmion logic gates, but it is limited by the manufacturing difficulty and energy costs associated with the use of notches for skyrmion synchronization. To overcome these challenges, we, therefore, propose a skyrmion logic synchronized via modulation of voltage-controlled magnetic anisotropy (VCMA). In addition to demonstrating the principle of VCMA synchronization through micromagnetic simulations, we also quantify the impacts of current density, skyrmion velocity, and anisotropy barrier height on skyrmion motion. Further micromagnetic results demonstrate the feasibility of cascaded logic circuits in which VCMA synchronizers enable clocking and pipelining, illustrating a feasible pathway toward energy-efficient large-scale computing systems based on magnetic skyrmions.

1.
K.
Everschor-Sitte
,
J.
Masell
,
R. M.
Reeve
, and
M.
Kläui
,
J. Appl. Phys.
124
,
240901
(
2018
).
2.
J.
Sampaio
,
V.
Cros
,
S.
Rohart
,
A.
Thiaville
, and
A.
Fert
,
Nat. Nanotechnol.
8
,
839
(
2013
).
3.
R.
Tomasello
,
E.
Martinez
,
R.
Zivieri
,
L.
Torres
,
M.
Carpentieri
, and
G.
Finocchio
,
Sci. Rep.
4
,
6784
(
2015
).
4.
W.
Kang
,
X.
Chen
,
D.
Zhu
,
S.
Li
,
Y.
Huang
,
Y.
Zhang
, and
W.
Zhao
, in
Design, Automation & Test in Europe Conference & Exhibition
(
2018
).
5.
A. K.
Behera
,
C.
Murapaka
,
S.
Mallick
,
B. B.
Singh
, and
S.
Bedanta
, “
Skyrmion racetrack memory with an antidot
,” arXiv:1907.03449 (
2020
).
6.
Z.
Zhang
,
Y.
Zhu
,
Y.
Zhang
,
K.
Zhang
,
J.
Nan
,
Z.
Zheng
,
Y.
Zhang
, and
W.
Zhao
,
IEEE Electron Device Lett.
40
,
1984
(
2019
).
7.
X.
Zhang
,
G. P.
Zhao
,
H.
Fangohr
,
J. P.
Liu
,
W. X.
Xia
,
J.
Xia
, and
F. J.
Morvan
,
Sci. Rep.
5
,
7643
(
2015
).
8.
S.
Zhang
,
A. A.
Baker
,
S.
Komineas
, and
T.
Hesjedal
,
Sci. Rep.
5
,
15773
(
2015
).
9.
X.
Zhang
,
Y.
Zhou
,
M.
Ezawa
,
G. P.
Zhao
, and
W.
Zhao
,
Sci. Rep.
5
,
11369
(
2015
).
10.
X.
Xing
,
P. W. T.
Pong
, and
Y.
Zhou
,
Phys. Rev. B
94
,
054408
(
2016
).
11.
S.
Luo
,
M.
Song
,
X.
Li
,
Y.
Zhang
,
J.
Hong
,
X.
Yang
,
X.
Zou
,
N.
Xu
, and
L.
You
,
Nano Lett.
18
,
1180
(
2018
).
12.
X.
Zhang
,
M.
Ezawa
, and
Y.
Zhou
,
Sci. Rep.
5
,
9400
(
2015
).
13.
M.
Chauwin
,
X.
Hu
,
F.
Garcia-Sanchez
,
N.
Betrabet
,
A.
Paler
,
C.
Moutafis
, and
J. S.
Friedman
,
Phys. Rev. Appl.
12
,
064053
(
2019
).
14.
J.
Wang
,
J.
Xia
,
X.
Zhang
,
G. P.
Zhao
,
L.
Ye
,
J.
Wu
,
Y.
Xu
,
W.
Zhao
,
Z.
Zou
, and
Y.
Zhou
,
J. Phys. D: Appl. Phys.
51
,
205002
(
2018
).
15.
X.
Wang
,
W.
Gan
,
J.
Martinez
,
T.
Funan
,
M.
Jalil
, and
W. S.
Lew
,
Nanoscale
10
,
733
(
2018
).
16.
K.
Hamamoto
and
N.
Nagaosa
, “
Electrical detection of a skyrmion in a magnetic tunneling junction
,” arXiv:1803.04588 (
2018
).
17.
W.
Kang
,
Y.
Huang
,
C.
Zheng
,
W.
Lv
,
N.
Lei
,
Y.
Zhang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
,
Sci. Rep.
6
,
23164
(
2016
).
18.
W.-G.
Wang
,
M.
Li
,
S.
Hageman
, and
C. L.
Chien
,
Nat. Mater.
11
,
64
(
2012
).
19.
P. F.
Carcia
,
J. Appl. Phys.
63
,
5066
(
1988
).
20.
P. J.
Metaxas
,
J. P.
Jamet
,
A.
Mougin
,
M.
Cormier
,
J.
Ferré
,
V.
Baltz
,
B.
Rodmacq
,
B.
Dieny
, and
R. L.
Stamps
,
Phys. Rev. Lett.
99
,
217208
(
2007
).
21.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
,
AIP Adv.
4
,
107133
(
2014
).
22.
J.
Leliaert
,
B.
Van de Wiele
,
A.
Vansteenkiste
,
L.
Laurson
,
G.
Durin
,
L.
Dupré
, and
B.
Van Waeyenberge
,
J. Appl. Phys.
115
,
233903
(
2014
).
23.
Y.
Zhang
,
S.
Luo
,
B.
Yan
,
J.
Ou-Yang
,
X.
Yang
,
S.
Chen
,
B.
Zhu
, and
L.
You
,
Nanoscale
9
,
10212
(
2017
).
24.
R.
Yanes Diaz
,
F.
Garcia-Sanchez
,
R.
Luis
,
E.
Martinez
,
V.
Raposo
,
L.
Torres
, and
L.
Lopez-Diaz
,
Appl. Phys. Lett.
115
,
132401
(
2019
).
25.
A. A.
Thiele
,
Phys. Rev. Lett.
30
,
230
(
1973
).
26.
J. G.
Alzate
,
P.
Khalili Amiri
,
G.
Yu
,
P.
Upadhyaya
,
J. A.
Katine
,
J.
Langer
,
B.
Ocker
,
I. N.
Krivorotov
, and
K. L.
Wang
,
Appl. Phys. Lett.
104
,
112410
(
2014
).

Supplementary Material

You do not currently have access to this content.