This study aims to investigate a laser ultrasound (LUS) transducer for high-temperature (>100 °C) applications. For decades, many researchers have investigated efficient LUS transducers, yet studies on laser ultrasound transducers capable of performing at the high-temperature condition are rarely found in the literature. Most current LUS transducers still utilize a polymer-based composite material, that is, not stable at varying temperature conditions. This study introduces a liquid metallic (LM) LUS transducer that utilizes field's metal, which has a high thermal expansion (∼3 × 10−4 K−1). We hypothesized that such a high thermal expansion of the liquid metal can effectively produce laser-generated ultrasound waves, substituting for conventional polymer-based transducers. A numerical simulation predicted that the LM LUS transducer would produce higher LUS intensity (∼22 dB) than that without the LUS transducer. Experiment results confirmed that the LM transducer effectively intensifies the ultrasound wave signals, obtaining a signal-to-noise gain over 30 dB. Moreover, the transducer was found capable of transmitting detectable wave packets in relatively high-temperature conditions (∼400 °C), while conventional candle soot nanoparticle-polydimethylsiloxane could not perform stably at these elevated temperatures. The investigations introduced in this article are scientifically significant since we demonstrated the engineering feasibility of liquid metallic materials for LUS transducers.

1.
C.
Prada
,
O.
Balogun
, and
T. W.
Murray
,
Appl. Phys. Lett.
87
,
194109
(
2005
).
2.
H.
Selim
,
M.
Delgado Prieto
,
J.
Trull
,
L.
Romeral
, and
C.
Cojocaru
,
Sensors
19
,
573
(
2019
).
3.
E.
Grünwald
,
R.
Nuster
,
R.
Treml
,
D.
Kiener
,
G.
Paltauf
, and
R.
Brunner
,
Mater. Today: Proc.
2
,
4289
(
2015
).
4.
J.
Yin
and
Y.
Cao
,
Opt. Express
27
,
18232
(
2019
).
5.
J.
Kim
,
H.
Kim
,
W. Y.
Chang
,
W.
Huang
,
X.
Jiang
, and
P. A.
Dayton
,
IEEE Nanotechnol. Mag.
13
,
13
(
2019
).
6.
H.
Kim
,
W. Y.
Chang
,
T.
Kim
, and
X.
Jiang
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
67
,
1867
(
2020
).
7.
T.
Kim
,
W. Y.
Chang
,
H.
Kim
, and
X.
Jiang
,
Appl. Phys. Lett.
115
,
102902
(
2019
).
8.
T.
Lee
,
H. W.
Baac
,
Q.
Li
, and
L. J.
Guo
,
Adv. Opt. Mater.
6
,
1800491
(
2018
).
9.
H. W.
Baac
,
J. G.
Ok
,
H. J.
Park
,
T.
Ling
,
S. L.
Chen
,
A. J.
Hart
, and
L. J.
Guo
,
Appl. Phys. Lett.
97
,
234104
(
2010
).
10.
W. Y.
Chang
,
W.
Huang
,
J.
Kim
,
S.
Li
, and
X.
Jiang
,
Appl. Phys. Lett.
107
,
161903
(
2015
).
11.
W.
Huang
,
W. Y.
Chang
,
J.
Kim
,
S.
Li
,
S.
Huang
, and
X.
Jiang
,
IEEE Trans. Nanotechnol.
15
,
395
(
2016
).
12.
N.
Wu
,
Y.
Tian
,
X.
Zou
,
V.
Silva
,
A.
Chery
, and
X.
Wang
,
J. Opt. Soc. Am. B
29
,
2016
(
2012
).
13.
B. Y.
Hsieh
,
J.
Kim
,
J.
Zhu
,
S.
Li
,
X.
Zhang
, and
X.
Jiang
,
Appl. Phys. Lett.
106
,
021902
(
2015
).
14.
R. J.
Colchester
,
E. J.
Alles
, and
A. E.
Desjardins
,
Appl. Phys. Lett.
114
,
113505
(
2019
).
15.
Y.
Zhang
,
J.
Yu
,
A. R.
Kahkoska
, and
Z.
Gu
,
Sensors
17
,
1400
(
2017
).
16.
H. W.
Baac
,
J. G.
Ok
,
A.
Maxwell
,
K. T.
Lee
,
Y. C.
Chen
,
A. J.
Hart
,
Z.
Xu
,
E.
Yoon
, and
L. J.
Guo
,
Sci. Rep.
2
,
989
(
2012
).
17.
J.
Di
,
J.
Kim
,
Q.
Hu
, and
X.
Jiang
,
J. Controlled Release
220
,
592
(
2015
).
18.
Y.
Shi
,
M.
Hu
,
Y.
Xing
, and
Y.
Li
,
Mater. Des.
185
,
108219
(
2020
).
19.
S.
Kim
,
J.
Kim
,
Y. H.
Joung
,
J.
Choi
, and
C.
Koo
,
Micromachines
9
,
639
(
2018
).
20.
F.
Pérez-Cota
,
R. J.
Smith
,
E.
Moradi
,
L.
Marques
,
K. F.
Webb
, and
M.
Clark
,
Appl. Opt.
54
,
8388
8398
(
2015
).
21.
S.
Noimark
,
R. J.
Colchester
,
R. K.
Poduval
,
E.
Maneas
,
E. J.
Alles
,
T.
Zhao
,
E. Z.
Zhang
,
M.
Ashworth
,
E.
Tsolaki
,
A. H.
Chester
,
N.
Latif
,
S.
Bertazzo
,
A. L.
David
,
S.
Ourselin
,
P. C.
Beard
,
I. P.
Parkin
,
I.
Papakonstantinou
, and
A. E.
Desjardins
,
Adv. Funct. Mater.
28
,
1704919
(
2018
).
22.
T.
Lee
and
L. J.
Guo
,
Adv. Opt. Mater.
5
,
1600421
(
2017
).
23.
G.
Bo
,
L.
Ren
,
X.
Xu
,
Y.
Du
, and
S.
Dou
,
Adv. Phys.: X
3
,
1446359
(
2018
).
24.
W. D.
Drotning
,
J. Less Common Met.
96
,
223
(
1984
).
25.
S.
Ayrinhac
,
M.
Gauthier
,
G. Le
Marchand
,
M.
Morand
,
F.
Bergame
, and
F.
Decremps
,
J. Phys.: Condens. Matter
27
,
275103
(
2015
).
26.
A.
Lipchitz
, Doctoral dissertation (
UOIT
,
2015
).
27.
H.
Yockell-Lelièvre
,
E. F.
Borra
,
A. M.
Ritcey
, and
L. V.
da Silva
,
Appl. Opt.
42
,
1882
(
2003
).
28.
29.
M. R. J.
Scherer
,
Double-Gyroid-Structured Functional Materials: Synthesis and Applications
(
Springer
,
2013
).
30.
S. A.
Idrus-Saidi
,
J.
Tang
,
M. B.
Ghasemian
,
J.
Yang
,
J.
Han
,
N.
Syed
,
T.
Daeneke
,
R.
Abbasi
,
P.
Koshy
,
A. P.
O'Mullane
, and
K.
Kalantar-Zadeh
,
J. Mater. Chem. A
7
,
17876
(
2019
).
31.
J. A.
Cahill
and
A. D.
Kirshenbaum
,
J. Inorg. Nucl. Chem.
25
,
501
(
1963
).
32.
A.
Lipchitz
,
T.
Imbert
, and
G. D.
Harvel
,
ASME Power Conf.
2
,
98224
(
2013
).
33.
M. F.
Culpin
,
Proc. Phys. Soc. B
70
,
1069
(
1957
).
34.
V.
Sobolev
and
G.
Benamati
,
Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Material Compatibility, Thermal-Hydraulics and Technologies
(
OECD
,
2015
), p. 27.
35.
J. H.
Kim
,
K. L.
Jang
,
K.
Ahn
,
T.
Yoon
,
T. I.
Lee
, and
T. S.
Kim
,
Sci. Rep.
9
,
1
7
(
2019
).
36.
K.
Dong
,
J.
Zhang
,
M.
Cao
,
M.
Wang
,
B.
Gu
, and
B.
Sun
,
Polym. Test.
55
,
44
(
2016
).
37.
L. V.
Wang
,
IEEE J. Sel. Top. Quantum Electron.
14
,
171
(
2008
).
38.
T.
Kim
,
J.
Kim
,
R.
Dalmau
,
R.
Schlesser
,
E.
Preble
, and
X.
Jiang
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
1880
(
2015
).
39.
M.
Faraz
,
M. A.
Abbasi
,
P.
Sang
,
D.
Son
, and
H. W.
Baac
,
Micromachines
11
,
631
(
2020
).
40.
H.
Kim
,
S.
Kerrigan
,
M.
Bourham
, and
X.
Jiang
,
IEEE Trans. Ind. Electron.
68
,
5346
(
2021
).
41.
V.
Barreau
,
D.
Yu
,
R.
Hensel
, and
E.
Arzt
,
J. Mech. Behav. Biomed. Mater.
76
,
110
(
2017
).

Supplementary Material

You do not currently have access to this content.