One of the most powerful ways to manipulate spins in nanometer-scale devices is by converting a charge current to a spin current via spin–orbit coupling. The resulting spin–orbit torques (SOTs) have been investigated and utilized extensively in the past decade. Quantitatively, however, SOTs may exhibit a non-trivial angular dependence, which is not well explored. Here, we develop a nested iterative analysis to determine the magnitude of SOTs from harmonic Hall measurements. This updated method largely improves the fit quality in the full magnetic field range and accurately retrieves even higher order, anisotropic spin–orbit torque coefficients. The numerical implementation of our algorithm is fast, robust, and designed for easy integration into existing analysis schemes. We verify our code using simulated data with and without anisotropic SOTs. Accurately quantifying higher order SOT terms can be especially useful for modeling non-uniform magnetic textures such as domain walls and skyrmions and current-induced magnetization switching characteristics.

1.
J.
Sinova
and
I.
Žutić
, “
New moves of the spintronics tango
,”
Nat. Mater.
11
,
368
371
(
2012
).
2.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
, “
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
,”
Rev. Mod. Phys.
91
,
035004
(
2019
).
3.
L.
Liu
,
C. F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Spin-torque switching with the giant spin Hall effect of tantalum
,”
Science
336
,
555
558
(
2012
).
4.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P. J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
193
(
2011
).
5.
F.
Büttner
,
I.
Lemesh
,
M.
Schneider
,
B.
Pfau
,
C. M.
Günther
,
P.
Hessing
,
J.
Geilhufe
,
L.
Caretta
,
D.
Engel
,
B.
Krüger
,
J.
Viefhaus
,
S.
Eisebitt
, and
G. S. D.
Beach
, “
Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques
,”
Nat. Nanotechnol.
12
,
1040
1044
(
2017
).
6.
S.
Woo
,
K. M.
Song
,
X.
Zhang
,
M.
Ezawa
,
Y.
Zhou
,
X.
Liu
,
M.
Weigand
,
S.
Finizio
,
J.
Raabe
,
M. C.
Park
,
K. Y.
Lee
,
J. W.
Choi
,
B. C.
Min
,
H. C.
Koo
, and
J.
Chang
, “
Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy
,”
Nat. Electron.
1
,
288
296
(
2018
).
7.
K. S.
Ryu
,
L.
Thomas
,
S. H.
Yang
, and
S.
Parkin
, “
Chiral spin torque at magnetic domain walls
,”
Nat. Nanotechnol.
8
,
527
533
(
2013
).
8.
S.
Emori
,
U.
Bauer
,
S. M.
Ahn
,
E.
Martinez
, and
G. S. D.
Beach
, “
Current-driven dynamics of chiral ferromagnetic domain walls
,”
Nat. Mater.
12
,
611
616
(
2013
).
9.
K.
Litzius
,
I.
Lemesh
,
B.
Krüger
,
P.
Bassirian
,
L.
Caretta
,
K.
Richter
,
F.
Büttner
,
K.
Sato
,
O. A.
Tretiakov
,
J.
Förster
,
R. M.
Reeve
,
M.
Weigand
,
I.
Bykova
,
H.
Stoll
,
G.
Schütz
,
G. S. D.
Beach
, and
M.
Klaüi
, “
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
,”
Nat. Phys.
13
,
170
175
(
2017
).
10.
S.
Woo
,
K. M.
Song
,
H. S.
Han
,
M. S.
Jung
,
M. Y.
Im
,
K. S.
Lee
,
K. S.
Song
,
P.
Fischer
,
J. I.
Hong
,
J. W.
Choi
,
B. C.
Min
,
H. C.
Koo
, and
J.
Chang
, “
Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy
,”
Nat. Commun.
8
,
15573
(
2017
).
11.
W.
Legrand
,
D.
Maccariello
,
N.
Reyren
,
K.
Garcia
,
C.
Moutafis
,
C.
Moreau-Luchaire
,
S.
Collin
,
K.
Bouzehouane
,
V.
Cros
, and
A.
Fert
, “
Room-temperature current-induced generation and motion of sub-100 nm skyrmions
,”
Nano Lett.
17
,
2703
2712
(
2017
).
12.
W.
Jiang
,
X.
Zhang
,
G.
Yu
,
W.
Zhang
,
X.
Wang
,
M.
Benjamin Jungfleisch
,
J. E.
Pearson
,
X.
Cheng
,
O.
Heinonen
,
K. L.
Wang
,
Y.
Zhou
,
A.
Hoffmann
, and
S. G. E.
Te Velthuis
, “
Direct observation of the skyrmion Hall effect
,”
Nat. Phys.
13
,
162
169
(
2017
).
13.
K.
Garello
,
I. M.
Miron
,
C. O.
Avci
,
F.
Freimuth
,
Y.
Mokrousov
,
S.
Blügel
,
S.
Auffret
,
O.
Boulle
,
G.
Gaudin
, and
P.
Gambardella
, “
Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures
,”
Nat. Nanotechnol.
8
,
587
593
(
2013
).
14.
C. O.
Avci
,
K.
Garello
,
M.
Gabureac
,
A.
Ghosh
,
A.
Fuhrer
,
S. F.
Alvarado
, and
P.
Gambardella
, “
Interplay of spin-orbit torque and thermoelectric effects in ferromagnet/normal-metal bilayers
,”
Phys. Rev. B
90
,
224427
(
2014
).
15.
X.
Qiu
,
P.
Deorani
,
K.
Narayanapillai
,
K. S.
Lee
,
K. J.
Lee
,
H. W.
Lee
, and
H.
Yang
, “
Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires
,”
Sci. Rep.
4
,
4491
(
2015
).
16.
S.
Ghosh
and
A.
Manchon
, “
Spin-orbit torque in a three-dimensional topological insulator-ferromagnet heterostructure: Crossover between bulk and surface transport
,”
Phys. Rev. B
97
,
134402
(
2018
).
17.
H. K.
Gweon
,
K. J.
Lee
, and
S. H.
Lim
, “
Influence of MgO sputtering power and post annealing on strength and angular dependence of spin-orbit torques in Pt/Co/MgO trilayers
,”
Phys. Rev. Appl.
11
,
014034
(
2019
).
18.
T.
Schulz
,
K.
Lee
,
B.
Krüger
,
R.
Lo Conte
,
G. V.
Karnad
,
K.
Garcia
,
L.
Vila
,
B.
Ocker
,
D.
Ravelosona
, and
M.
Kläui
, “
Effective field analysis using the full angular spin-orbit torque magnetometry dependence
,”
Phys. Rev. B
95
,
224409
(
2017
).
19.
C.
Ortiz Pauyac
,
X.
Wang
,
M.
Chshiev
, and
A.
Manchon
, “
Angular dependence and symmetry of Rashba spin torque in ferromagnetic heterostructures
,”
Appl. Phys. Lett.
102
,
252403
(
2013
).
20.
P. M.
Haney
,
R. A.
Duine
,
A. S.
Núñez
, and
A. H.
MacDonald
, “
Current-induced torques in magnetic metals: Beyond spin-transfer
,”
J. Magn. Magn. Mater.
320
,
1300
1311
(
2008
).
21.
V. P.
Amin
and
M. D.
Stiles
, “
Spin transport at interfaces with spin-orbit coupling: Formalism and phenomenology
,”
Phys. Rev. B
94
,
104419
(
2016
).
22.
J. P.
Hanke
,
F.
Freimuth
,
B.
Dupé
,
J.
Sinova
,
M.
Kläui
, and
Y.
Mokrousov
, “
Engineering the dynamics of topological spin textures by anisotropic spin-orbit torques
,”
Phys. Rev. B
101
,
014428
(
2020
).
23.
E. S.
Park
,
D. K.
Lee
,
B. C.
Min
, and
K. J.
Lee
, “
Elimination of thermoelectric artifacts in the harmonic Hall measurement of spin-orbit torque
,”
Phys. Rev. B
100
,
214438
(
2019
).
24.
M.
Hayashi
,
J.
Kim
,
M.
Yamanouchi
, and
H.
Ohno
, “
Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements
,”
Phys. Rev. B
89
,
144425
(
2014
).
25.
C. O.
Avci
,
K.
Garello
,
C.
Nistor
,
S.
Godey
,
B.
Ballesteros
,
A.
Mugarza
,
A.
Barla
,
M.
Valvidares
,
E.
Pellegrin
,
A.
Ghosh
,
I. M.
Miron
,
O.
Boulle
,
S.
Auffret
,
G.
Gaudin
, and
P.
Gambardella
, “
Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers
,”
Phys. Rev. B
89
,
214419
(
2014
).
26.
D. M. J.
van Elst
,
M. R. A.
Peters
,
F.
Büttner
,
A.
Wittman
,
E. A.
Tremsina
,
C.
Avci
,
R.
Lavrijsen
,
H. J. M.
Swagten
, and
G. S. D.
Beach
(
2021
). “Accurate extraction of anisotropic spin-orbit torques from harmonic measurements,”
Zenodo
.
You do not currently have access to this content.