In the last decades, spin-based devices have been developed in the effort for achieving faster memories, with low power consumption. To realize high working frequencies, which are required for current operating electronics, noise reduction is critical. We show that chiral molecule monolayer linked with thiols can reduce the magnetic scattering noise in ferromagnetic devices. The chiral monolayer passivates both magnetic disorder and surface impurities. We ascribe these results to the combination of thiol passivation, with the effect of the chiral-induced spin selectivity effect. The chiral molecules orient the magnetic domain reducing magnetic fluctuations.

2.
I.
Žutić
,
J.
Fabian
, and
S.
Das Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
3.
J. A.
Katine
and
E. E.
Fullerton
,
J. Magn. Magn. Mater.
320
,
1217
(
2008
).
4.
P.
Réfrégier
,
Noise Theory and Application to Physics: From Fluctuations to Information
(
Springer-Verlag
,
New York
,
2004
).
5.
F. G.
Aliev
and
J. P.
Cascales
,
Noise in Spintronics: From Understanding to Manipulation
(
Pan Stanford Publishing
,
Singapore
,
2018
).
6.
M. B.
Weissman
,
Annu. Rev. Mater. Sci.
26
,
395
(
1996
).
7.
J.
Koh
, in
Low-Frequency-Noise Reduction Technique for Linear Analog CMOS IC's
(
2005
).
8.
Circuits at the Nanoscale: Communications, Imaging, and Sensing
, edited by
K.
Iniewski
(
CRC Press/Taylor & Francis
,
Boca Raton
,
2009
).
9.
C.
Enz
and
A.
Boukhayma
, in
International Conference on Noise and Fluctuations (ICNF)
(
IEEE
,
Xian, China
,
2015
), pp.
1
6
.
10.
K.
Jainwal
and
M.
Sarkar
, arXiv:180711577Phys. (
2018
).
11.
E. A. M.
Klumperink
,
S. L. J.
Gierkink
,
A. P.
van der Wel
, and
B.
Nauta
,
IEEE J. Solid-State Circuits
35
,
994
(
2000
).
12.
T. N. T.
Do
,
A.
Malmros
,
P.
Gamarra
,
C.
Lacam
,
M.-A.
Di Forte-Poisson
,
M.
Tordjman
,
M.
Horberg
,
R.
Aubry
,
N.
Rorsman
, and
D.
Kuylenstierna
,
IEEE Electron Device Lett.
36
,
315
(
2015
).
13.
B.
Hoex
,
J. J. H.
Gielis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
104
,
113703
(
2008
).
14.
J.
Na
,
M.-K.
Joo
,
M.
Shin
,
J.
Huh
,
J.-S.
Kim
,
M.
Piao
,
J.-E.
Jin
,
H.-K.
Jang
,
H. J.
Choi
,
J. H.
Shim
, and
G.-T.
Kim
,
Nanoscale
6
,
433
(
2014
).
15.
MEMS Materials and Processes Handbook
, edited by
R.
Ghodssi
and
P.
Lin
(
Springer US
,
Boston, MA
,
2011
).
16.
O.
Salihoglu
,
A.
Muti
, and
A.
Aydinli
,
Proc. SPIE
8704
,
87040T
(
2013
).
17.
C.
Vericat
,
M. E.
Vela
,
G.
Corthey
,
E.
Pensa
,
E.
Cortés
,
M. H.
Fonticelli
,
F.
Ibañez
,
G. E.
Benitez
,
P.
Carro
, and
R. C.
Salvarezza
,
RSC Adv
4
,
27730
(
2014
).
18.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
,
Nat. Rev. Chem.
3
,
250
(
2019
).
19.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
,
J. Phys. Chem. Lett.
11
,
3660
(
2020
).
20.
R.
Naaman
and
D. H.
Waldeck
,
Annu. Rev. Phys. Chem.
66
,
263
(
2015
).
21.
G.
Koplovitz
,
D.
Primc
,
O. B.
Dor
,
S.
Yochelis
,
D.
Rotem
,
D.
Porath
, and
Y.
Paltiel
,
Adv. Mater.
29
,
1606748
(
2017
).
22.
H.
Al‐Bustami
,
G.
Koplovitz
,
D.
Primc
,
S.
Yochelis
,
E.
Capua
,
D.
Porath
,
R.
Naaman
, and
Y.
Paltiel
,
Small
14
,
1801249
(
2018
).
23.
K.
Michaeli
,
N.
Kantor-Uriel
,
R.
Naaman
, and
D. H.
Waldeck
,
Chem. Soc. Rev.
45
,
6478
(
2016
).
24.
O.
Ben Dor
,
N.
Morali
,
S.
Yochelis
,
L. T.
Baczewski
, and
Y.
Paltiel
,
Nano Lett.
14
,
6042
(
2014
).
25.
E. Z. B.
Smolinsky
,
A.
Neubauer
,
A.
Kumar
,
S.
Yochelis
,
E.
Capua
,
R.
Carmieli
,
Y.
Paltiel
,
R.
Naaman
, and
K.
Michaeli
,
J. Phys. Chem. Lett.
10
,
1139
(
2019
).
26.
M.
Suda
,
Y.
Thathong
,
V.
Promarak
,
H.
Kojima
,
M.
Nakamura
,
T.
Shiraogawa
,
M.
Ehara
, and
H. M.
Yamamoto
,
Nat. Commun.
10
,
2455
(
2019
).
27.
H.
Al-Bustami
,
B. P.
Bloom
,
A.
Ziv
,
S.
Goldring
,
S.
Yochelis
,
R.
Naaman
,
D. H.
Waldeck
, and
Y.
Paltiel
,
Nano Lett.
20
,
8675
(
2020
).
28.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
,
Rev. Mod. Phys.
82
,
1539
(
2010
).
29.
A.
Hirohata
,
K.
Yamada
,
Y.
Nakatani
,
I.-L.
Prejbeanu
,
B.
Diény
,
P.
Pirro
, and
B.
Hillebrands
,
J. Magn. Magn. Mater.
509
,
166711
(
2020
).
30.
G.
Bergmann
,
Phys. Rev. Lett.
41
,
264
(
1978
).
31.
O.
Dutta
,
A.
Przysiężna
, and
J.
Zakrzewski
,
Sci. Rep.
5
,
11060
(
2015
).
33.
N. T. N.
Ha
,
A.
Sharma
,
D.
Slawig
,
S.
Yochelis
,
Y.
Paltiel
,
D. R. T.
Zahn
,
G.
Salvan
, and
C.
Tegenkamp
,
J. Phys. Chem. C
124
(
10
),
5734
5739
(
2020
).
34.
R.
Karplus
and
J. M.
Luttinger
,
Phys. Rev.
95
,
1154
(
1954
).
35.
O.
Ben Dor
,
S.
Yochelis
,
A.
Radko
,
K.
Vankayala
,
E.
Capua
,
A.
Capua
,
S.-H.
Yang
,
L. T.
Baczewski
,
S. S. P.
Parkin
,
R.
Naaman
, and
Y.
Paltiel
,
Nat. Commun.
8
,
14567
(
2017
).
36.
P.
Dutta
and
P. M.
Horn
,
Rev. Mod. Phys.
53
,
497
(
1981
).
37.
N.
Giordano
,
Phys. Rev. B
53
,
14937
(
1996
).
38.
Y.-P.
Zhao
,
R. M.
Gamache
,
G.-C.
Wang
,
T.-M.
Lu
,
G.
Palasantzas
, and
J. Th. M.
De Hosson
,
J. Appl. Phys.
89
,
1325
(
2001
).
39.
K. F.
Mak
,
K. L.
McGill
,
J.
Park
, and
P. L.
McEuen
,
Science
344
,
1489
(
2014
).
40.
M. I.
Dyakonov
and
V. I.
Perel
,
Phys. Lett. A
35
,
459
(
1971
).

Supplementary Material

You do not currently have access to this content.