Understanding the relaxation mechanisms of photoexcited charge carriers in two-dimensional materials is indispensable from the fundamental point of view and for future optoelectronic applications. Through the photoconductivity and electronic transport experiments, we probe the mechanisms behind the persistent photoconductivity (PPC) in monolayer molybdenum disulfide (MoS2). The temperature (T) and power-dependent photoresponse studies reveal that the relaxation of excited charge carriers is strongly affected by the random fluctuations of local potentials. The relaxation time (τ) increases from τ 12 s at T =16.5 K to τ 1235 s at T =297 K, indicating PPC is a high T phenomenon in monolayer MoS2. The transport measurements demonstrate that the defect states with the density 4.43 × 1014 eV−1 cm–2 in a low gate voltage regime, originating from the sulfur vacancies, are responsible for these fluctuations. With a rise in temperature, the defect states undergo a transition from localization to extended states at T 100 K and thereby form the percolation network, which profoundly influences the relaxation mechanism. Our meticulous experiments and quantitative analysis provide newer insight into the origin of PPC in monolayer MoS2.

1.
L.
Britnell
,
R.
Ribeiro
,
A.
Eckmann
,
R.
Jalil
,
B.
Belle
,
A.
Mishchenko
,
Y.-J.
Kim
,
R.
Gorbachev
,
T.
Georgiou
,
S.
Morozov
 et al., “
Strong light-matter interactions in heterostructures of atomically thin films
,”
Science
340
,
1311
(
2013
).
2.
K.
Roy
,
M.
Padmanabhan
,
S.
Goswami
,
T. P.
Sai
,
G.
Ramalingam
,
S.
Raghavan
, and
A.
Ghosh
, “
Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices
,”
Nat. Nanotechnol.
8
,
826
(
2013
).
3.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
4.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
, “
Ultrasensitive photodetectors based on monolayer MoS2
,”
Nat. Nanotechnol.
8
,
497
(
2013
).
5.
H.
Zeng
,
J.
Dai
,
W.
Yao
,
D.
Xiao
, and
X.
Cui
, “
Valley polarization in MoS2 monolayers by optical pumping
,”
Nat. Nanotechnol.
7
,
490
(
2012
).
6.
Y.
Wu
,
C.
Shen
,
Q.
Tan
,
J.
Shi
,
X.
Liu
,
Z.
Wu
,
J.
Zhang
,
P.
Tan
, and
H.
Zheng
, “
Valley zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature
,”
Appl. Phys. Lett.
112
,
153105
(
2018
).
7.
Y.
Zhang
,
H.
Li
,
L.
Wang
,
H.
Wang
,
X.
Xie
,
S.-L.
Zhang
,
R.
Liu
, and
Z.-J.
Qiu
, “
Photothermoelectric and photovoltaic effects both present in MoS2
,”
Sci. Rep.
5
,
7938
(
2015
).
8.
J. H.
Lee
,
H. Z.
Gul
,
H.
Kim
,
B. H.
Moon
,
S.
Adhikari
,
J. H.
Kim
,
H.
Choi
,
Y. H.
Lee
, and
S. C.
Lim
, “
Photocurrent switching of monolayer MoS2 using a metal–insulator transition
,”
Nano Lett.
17
,
673
(
2017
).
9.
M. M.
Furchi
,
D. K.
Polyushkin
,
A.
Pospischil
, and
T.
Mueller
, “
Mechanisms of photoconductivity in atomically thin MoS2
,”
Nano Lett.
14
,
6165
(
2014
).
10.
P.
HL
,
P.
Mondal
,
A.
Bid
, and
J. K.
Basu
, “
Electrical and chemical tuning of exciton lifetime in monolayer MoS2 for field-effect transistors
,”
ACS Appl. Nano Mater.
3
,
641
(
2020
).
11.
Y.-C.
Wu
,
C.-H.
Liu
,
S.-Y.
Chen
,
F.-Y.
Shih
,
P.-H.
Ho
,
C.-W.
Chen
,
C.-T.
Liang
, and
W.-H.
Wang
, “
Extrinsic origin of persistent photoconductivity in monolayer MoS2 field effect transistors
,”
Sci. Rep.
5
,
11472
(
2015
).
12.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
(
2012
).
13.
L. V.
Scalvi
and
C. F.
Bueno
, “
Transient decay of photoinduced current in semiconductors and heterostructures
,”
J. Phys. D: Appl. Phys.
53
,
033001
(
2020
).
14.
G.
Cunningham
,
U.
Khan
,
C.
Backes
,
D.
Hanlon
,
D.
McCloskey
,
J. F.
Donegan
, and
J. N.
Coleman
, “
Photoconductivity of solution-processed MoS2 films
,”
J. Mater. Chem. C
1
,
6899
(
2013
).
15.
K.
Cho
,
T.-Y.
Kim
,
W.
Park
,
J.
Park
,
D.
Kim
,
J.
Jang
,
H.
Jeong
,
S.
Hong
, and
T.
Lee
, “
Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2 field-effect transistors
,”
Nanotechnology
25
,
155201
(
2014
).
16.
D. J.
Late
,
B.
Liu
,
H. R.
Matte
,
V. P.
Dravid
, and
C.
Rao
, “
Hysteresis in single-layer mos2 field effect transistors
,”
ACS Nano
6
,
5635
(
2012
).
17.
W.
Zhang
,
J.-K.
Huang
,
C.-H.
Chen
,
Y.-H.
Chang
,
Y.-J.
Cheng
, and
L.-J.
Li
, “
High-gain phototransistors based on a CVD MoS2 monolayer
,”
Adv. Mater.
25
,
3456
(
2013
).
18.
H.
Jiang
and
J.
Lin
, “
Persistent photoconductivity and related critical phenomena in Zn0.3 Cd0.7Se
,”
Phys. Rev. B
40
,
10025
(
1989
).
19.
H.
Jiang
and
J.
Lin
, “
Percolation transition of persistent photoconductivity in II-VI mixed crystals
,”
Phys. Rev. Lett.
64
,
2547
(
1990
).
20.
D.
Lang
and
R.
Logan
, “
Large-lattice-relaxation model for persistent photoconductivity in compound semiconductors
,”
Phys. Rev. Lett.
39
,
635
(
1977
).
21.
J. Y.
Lin
,
A.
Dissanayake
,
G.
Brown
, and
H. X.
Jiang
, “
Relaxation of persistent photoconductivity in Al0.3Ga0.7As
,”
Phys. Rev. B
42
,
5855
(
1990
).
22.
D. J.
Chadi
and
K. J.
Chang
, “
Energetics of Dx-center formation in GaAs and AlxGa1xAs alloys
,”
Phys. Rev. B
39
,
10063
(
1989
).
23.
P.
Mooney
, “
Deep donor levels (DX centers) in III-V semiconductors
,”
J. Appl. Phys.
67
,
R1
(
1990
).
24.
H.
Queisser
and
D.
Theodorou
, “
Decay kinetics of persistent photoconductivity in semiconductors
,”
Phys. Rev. B
33
,
4027
(
1986
).
25.
K.
Roy
,
M.
Padmanabhan
,
S.
Goswami
,
T. P.
Sai
,
S.
Kaushal
, and
A.
Ghosh
, “
Optically active heterostructures of graphene and ultrathin MoS2
,”
Solid state Commun.
175–176
,
35
(
2013
).
26.
H.
Qiu
,
T.
Xu
,
Z.
Wang
,
W.
Ren
,
H.
Nan
,
Z.
Ni
,
Q.
Chen
,
S.
Yuan
,
F.
Miao
,
F.
Song
 et al., “
Hopping transport through defect-induced localized states in molybdenum disulphide
,”
Nat. Commun.
4
(
1
),
2642
(
2013
).
27.
W.
Zhu
,
T.
Low
,
Y.-H.
Lee
,
H.
Wang
,
D. B.
Farmer
,
J.
Kong
,
F.
Xia
, and
P.
Avouris
, “
Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition
,”
Nat. Commun.
5
(
1
),
3087
(
2014
).
28.
S.
Ghatak
and
A.
Ghosh
, “
Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor
,”
Appl. Phys. Lett.
103
,
122103
(
2013
).
29.
S.
Ghatak
,
A. N.
Pal
, and
A.
Ghosh
, “
Nature of electronic states in atomically thin MoS2 field-effect transistors
,”
ACS Nano
5
,
7707
(
2011
).
30.
S.
Sarkar
,
H.
Pradeepa
,
G.
Nayak
,
L.
Marty
,
J.
Renard
,
J.
Coraux
,
N.
Bendiab
,
V.
Bouchiat
,
J. K.
Basu
, and
A.
Bid
, “
Evolution of inter-layer coupling in artificially stacked bilayer MoS2
,”
Nanoscale Adv.
1
,
4398
(
2019
).
31.
J.-H.
Ahn
,
W. M.
Parkin
,
C. H.
Naylor
,
A. C.
Johnson
, and
M.
Drndić
, “
Ambient effects on electrical characteristics of CVD-grown monolayer MoS2 field-effect transistors
,”
Sci. Rep.
7
,
4075
(
2017
).
32.
S. Y.
Lee
,
U. J.
Kim
,
J.
Chung
,
H.
Nam
,
H. Y.
Jeong
,
G. H.
Han
,
H.
Kim
,
H. M.
Oh
,
H.
Lee
,
H.
Kim
 et al., “
Large work function modulation of monolayer MoS2 by ambient gases
,”
ACS Nano
10
,
6100
(
2016
).
33.
S.
Studenikin
and
M.
Cocivera
, “
Time-resolved luminescence and photoconductivity of polycrystalline ZnO films
,”
J. Appl. Phys.
91
,
5060
(
2002
).
34.
N.
Mott
and
E.
Davis
,
Electronic Process in Non-Crystalline Materials
(
Clarendon Press
,
1979
), Vol.
1
.
35.
M. Y.
Han
,
J. C.
Brant
, and
P.
Kim
, “
Electron transport in disordered graphene nanoribbons
,”
Phys. Rev. Lett.
104
,
056801
(
2010
).
36.
H.
Liu
,
A. T.
Neal
, and
P. D.
Ye
, “
Channel length scaling of MoS2 MOSFETs
,”
ACS Nano
6
,
8563
(
2012
).
37.
K.
Lee
,
H.-Y.
Kim
,
M.
Lotya
,
J. N.
Coleman
,
G.-T.
Kim
, and
G. S.
Duesberg
, “
Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation
,”
Adv. Mater.
23
,
4178
(
2011
).
38.
N.
Tessler
,
Y.
Preezant
,
N.
Rappaport
, and
Y.
Roichman
, “
Charge transport in disordered organic materials and its relevance to thin-film devices: A tutorial review
,”
Adv. Mater.
21
,
2741
(
2009
).
39.
W.
Zhou
,
X.
Zou
,
S.
Najmaei
,
Z.
Liu
,
Y.
Shi
,
J.
Kong
,
J.
Lou
,
P. M.
Ajayan
,
B. I.
Yakobson
, and
J.-C.
Idrobo
, “
Intrinsic structural defects in monolayer molybdenum disulfide
,”
Nano Lett.
13
,
2615
(
2013
).
40.
M.
Amani
,
D.-H.
Lien
,
D.
Kiriya
,
J.
Xiao
,
A.
Azcatl
,
J.
Noh
,
S. R.
Madhvapathy
,
R.
Addou
,
K.
Santosh
,
M.
Dubey
 et al., “
Near-unity photoluminescence quantum yield in MoS2
,”
Science
350
,
1065
(
2015
).
41.
H.
Lu
,
A.
Kummel
, and
J.
Robertson
, “
Passivating the sulfur vacancy in monolayer MoS2
,”
APL Mater.
6
,
066104
(
2018
).
42.
J.
Hong
,
Z.
Hu
,
M.
Probert
,
K.
Li
,
D.
Lv
,
X.
Yang
,
L.
Gu
,
N.
Mao
,
Q.
Feng
,
L.
Xie
 et al., “
Exploring atomic defects in molybdenum disulphide monolayers
,”
Nat. Commun.
6
,
6293
(
2015
).
43.
S.
Yuan
,
R.
Roldán
,
M. I.
Katsnelson
, and
F.
Guinea
, “
Effect of point defects on the optical and transport properties of MoS2 and WS2
,”
Phys. Rev. B
90
,
041402
(
2014
).
44.
M. H.
Naik
and
M.
Jain
, “
Substrate screening effects on the quasiparticle band gap and defect charge transition levels in MoS2
,”
Phys. Rev. Mater.
2
,
084002
(
2018
).
45.
S.
Haldar
,
H.
Vovusha
,
M. K.
Yadav
,
O.
Eriksson
, and
B.
Sanyal
, “
Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te)
,”
Phys. Rev. B
92
,
235408
(
2015
).
46.
K.
Santosh
,
R. C.
Longo
,
R.
Addou
,
R. M.
Wallace
, and
K.
Cho
, “
Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers
,”
Nanotechnology
25
,
375703
(
2014
).
47.
R.
Addou
,
L.
Colombo
, and
R. M.
Wallace
, “
Surface defects on natural MoS2
,”
ACS Appl. Mater. Interfaces
7
,
11921
(
2015
).
48.
S.
Sarkar
,
A.
Bid
,
K. L.
Ganapathi
, and
S.
Mohan
, “
Probing defect states in few-layer MoS2 by conductance fluctuation spectroscopy
,”
Phys. Rev. B
99
,
245419
(
2019
).
49.
J.-M.
Li
and
X.-L.
Zeng
, “
Preparation of one-dimensional diluted magnetic semiconducting Cr0.046Zn0.954O and properties tuning with H2 atmospheric annealing
,”
Appl. Phys. Lett.
110
,
083107
(
2017
).
50.
J.-M.
Li
, “
Robust 2D room-temperature dilute ferrimagnetism enhancement in freestanding ammoniated atom-thin [0001] h-BN nanoplates
,”
ACS Appl. Mater. Interfaces
9
,
39626
(
2017
).
51.
J.-M.
Li
and
Y.-B.
Hu
, “
O2 atmospheric annealing-tunable defects in ionic oxide mgo nanoribbons
,”
Appl. Phys. Lett.
114
,
203101
(
2019
).
52.
A.
Sundaresan
,
R.
Bhargavi
,
N.
Rangarajan
,
U.
Siddesh
, and
C.
Rao
, “
Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides
,”
Phys. Rev. B
74
,
161306
(
2006
).
53.
J.-M.
Li
,
X.-L.
Zeng
,
D.-P.
Wei
,
Y.-B.
Hu
, and
Z.-A.
Xu
, “
A Cu2+ ion–F center complex view on the photoluminescence quenching and correlating ferrimagnetism in (Cu2+/Cu12+)0.044Zn0.956O electrospun nanobelts
,”
ACS Appl. Mater. Interfaces
6
,
4490
(
2014
).
54.
A.
Ayari
,
E.
Cobas
,
O.
Ogundadegbe
, and
M. S.
Fuhrer
, “
Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides
,”
J. Appl. Phys.
101
,
014507
(
2007
).
55.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T.
Booth
,
V.
Khotkevich
,
S.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
10451
(
2005
).
56.
X.
Zhang
,
S.
Wang
,
C.-K.
Lee
,
C.-M.
Cheng
,
J.-C.
Lan
,
X.
Li
,
J.
Qiao
, and
X.
Tao
, “
Unravelling the effect of sulfur vacancies on the electronic structure of the MoS2 crystal
,”
Phys. Chem. Chem. Phys.
22
,
21776
(
2020
).
57.
M.
Xie
,
J.
Zhou
,
H.
Ji
,
Y.
Ye
,
X.
Wang
,
K.
Jiang
,
L.
Shang
,
Z.
Hu
, and
J.
Chu
, “
Annealing effects on sulfur vacancies and electronic transport of mos2 films grown by pulsed-laser deposition
,”
Appl. Phys. Lett.
115
,
121901
(
2019
).
58.
X.
Chen
,
N. C.
Berner
,
C.
Backes
,
G. S.
Duesberg
, and
A. R.
McDonald
, “
Functionalization of two-dimensional MoS2: On the reaction between MoS2 and organic thiols
,”
Angew. Chem.
128
,
5897
(
2016
).

Supplementary Material

You do not currently have access to this content.