The cascaded decay in a four-level quantum emitter is a well-established mechanism to generate polarization-entangled photon pairs, the building blocks of many applications in quantum technologies. The four most prominent maximally entangled photon pair states are the Bell states. In a typical experiment based on an undriven emitter, only one type of Bell state entanglement can be observed in a given polarization basis. Other types of Bell state entanglement in the same basis can be created by continuously driving the system by an external laser. In this work, we propose a protocol for time-dependent entanglement switching in a four-level quantum emitter–cavity system that can be operated by changing the external driving strength. By selecting different two-photon resonances between the laser-dressed states, we can actively switch back and forth between the different types of Bell state entanglement in the same basis as well as between entangled and nonentangled photon pairs. This remarkable feature demonstrates the possibility to achieve a controlled, time-dependent manipulation of the entanglement type that could be used in many innovative applications.

1.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
,
Rev. Mod. Phys.
74
,
145
(
2002
).
2.
H.-K.
Lo
,
M.
Curty
, and
K.
Tamaki
,
Nat. Photonics
8
,
595
(
2014
).
3.
L.-M.
Duan
,
M. D.
Lukin
,
J. I.
Cirac
, and
P.
Zoller
,
Nature
414
,
413
(
2001
).
4.
D.
Huber
,
M.
Reindl
,
J.
Aberl
,
A.
Rastelli
, and
R.
Trotta
,
J. Opt.
20
,
073002
(
2018
).
5.
J.-W.
Pan
,
Z.-B.
Chen
,
C.-Y.
Lu
,
H.
Weinfurter
,
A.
Zeilinger
, and
M.
Żukowski
,
Rev. Mod. Phys.
84
,
777
(
2012
).
6.
C. H.
Bennett
and
D. P.
DiVincenzo
,
Nature
404
,
247
(
2000
).
7.
S. C.
Kuhn
,
A.
Knorr
,
S.
Reitzenstein
, and
M.
Richter
,
Opt. Express
24
,
25446
(
2016
).
8.
A.
Zeilinger
,
Phys. Scr.
92
,
072501
(
2017
).
9.
A.
Orieux
,
M. A. M.
Versteegh
,
K. D.
Jöns
, and
S.
Ducci
,
Rep. Prog. Phys.
80
,
076001
(
2017
).
10.
K.
Edamatsu
,
Jpn. J. Appl. Phys., Part 1
46
,
7175
(
2007
).
11.
S. J.
Freedman
and
J. F.
Clauser
,
Phys. Rev. Lett.
28
,
938
(
1972
).
12.
J.
Wen
,
S.
Du
,
Y.
Zhang
,
M.
Xiao
, and
M. H.
Rubin
,
Phys. Rev. A
77
,
033816
(
2008
).
13.
J.
Park
,
T.
Jeong
,
H.
Kim
, and
H. S.
Moon
,
Phys. Rev. Lett.
121
,
263601
(
2018
).
14.
T.
Seidelmann
,
F.
Ungar
,
M.
Cygorek
,
A.
Vagov
,
A. M.
Barth
,
T.
Kuhn
, and
V. M.
Axt
,
Phys. Rev. B
99
,
245301
(
2019
).
15.
M.
Cygorek
,
F.
Ungar
,
T.
Seidelmann
,
A. M.
Barth
,
A.
Vagov
,
V. M.
Axt
, and
T.
Kuhn
,
Phys. Rev. B
98
,
045303
(
2018
).
16.
T.
Seidelmann
,
F.
Ungar
,
A. M.
Barth
,
A.
Vagov
,
V. M.
Axt
,
M.
Cygorek
, and
T.
Kuhn
,
Phys. Rev. Lett.
123
,
137401
(
2019
).
17.
S.
Schumacher
,
J.
Förstner
,
A.
Zrenner
,
M.
Florian
,
C.
Gies
,
P.
Gartner
, and
F.
Jahnke
,
Opt. Express
20
,
5335
(
2012
).
18.
D.
Heinze
,
A.
Zrenner
, and
S.
Schumacher
,
Phys. Rev. B
95
,
245306
(
2017
).
19.
A.
Carmele
and
A.
Knorr
,
Phys. Rev. B
84
,
075328
(
2011
).
20.
R. M.
Stevenson
,
R. J.
Young
,
P.
Atkinson
,
K.
Cooper
,
D. A.
Ritchie
, and
A. J.
Shields
,
Nature
439
,
179
(
2006
).
21.
R. J.
Young
,
R. M.
Stevenson
,
P.
Atkinson
,
K.
Cooper
,
D. A.
Ritchie
, and
A. J.
Shields
,
New J. Phys.
8
,
29
(
2006
).
22.
A.
Muller
,
W.
Fang
,
J.
Lawall
, and
G. S.
Solomon
,
Phys. Rev. Lett.
103
,
217402
(
2009
).
23.
D.
Huber
,
M.
Reindl
,
S. F.
Covre da Silva
,
C.
Schimpf
,
J.
Martín-Sánchez
,
H.
Huang
,
G.
Piredda
,
J.
Edlinger
,
A.
Rastelli
, and
R.
Trotta
,
Phys. Rev. Lett.
121
,
033902
(
2018
).
24.
H.
Wang
,
H.
Hu
,
T.-H.
Chung
,
J.
Qin
,
X.
Yang
,
J.-P.
Li
,
R.-Z.
Liu
,
H.-S.
Zhong
,
Y.-M.
He
,
X.
Ding
,
Y.-H.
Deng
,
Q.
Dai
,
Y.-H.
Huo
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
,
Phys. Rev. Lett.
122
,
113602
(
2019
).
25.
J.
Liu
,
R.
Su
,
Y.
Wei
,
B.
Yao
,
S. F. C. d
Silva
,
Y.
Yu
,
J.
Iles-Smith
,
K.
Srinivasan
,
A.
Rastelli
,
J.
Li
, and
X.
Wang
,
Nat. Nanotechnol.
14
,
586
(
2019
).
26.
S.
Bounouar
,
C.
de la Haye
,
M.
Strauß
,
P.
Schnauber
,
A.
Thoma
,
M.
Gschrey
,
J.-H.
Schulze
,
A.
Strittmatter
,
S.
Rodt
, and
S.
Reitzenstein
,
Appl. Phys. Lett.
112
,
153107
(
2018
).
27.
A.
Dousse
,
J.
Suffczyński
,
A.
Beveratos
,
O.
Krebs
,
A.
Lemaître
,
I.
Sagnes
,
J.
Bloch
,
P.
Voisin
, and
P.
Senellart
,
Nature
466
,
217
(
2010
).
28.
R.
Winik
,
D.
Cogan
,
Y.
Don
,
I.
Schwartz
,
L.
Gantz
,
E. R.
Schmidgall
,
N.
Livneh
,
R.
Rapaport
,
E.
Buks
, and
D.
Gershoni
,
Phys. Rev. B
95
,
235435
(
2017
).
29.
M.
Müller
,
S.
Bounouar
,
K. D.
Jöns
,
M.
Glässl
, and
P.
Michler
,
Nat. Photonics
8
,
224
(
2014
).
30.
A.
Fognini
,
A.
Ahmadi
,
M.
Zeeshan
,
J. T.
Fokkens
,
S. J.
Gibson
,
N.
Sherlekar
,
S. J.
Daley
,
D.
Dalacu
,
P. J.
Poole
,
K. D.
Jöns
,
V.
Zwiller
, and
M. E.
Reimer
,
ACS Photonics
6
,
1656
(
2019
).
31.
N.
Akopian
,
N. H.
Lindner
,
E.
Poem
,
Y.
Berlatzky
,
J.
Avron
,
D.
Gershoni
,
B. D.
Gerardot
, and
P. M.
Petroff
,
Phys. Rev. Lett.
96
,
130501
(
2006
).
32.
R.
Hafenbrak
,
S. M.
Ulrich
,
P.
Michler
,
L.
Wang
,
A.
Rastelli
, and
O. G.
Schmidt
,
New J. Phys.
9
,
315
(
2007
).
33.
A. J.
Bennett
,
M. A.
Pooley
,
R. M.
Stevenson
,
M. B.
Ward
,
R. B.
Patel
,
A. B.
de la Giroday
,
N.
Sköld
,
I.
Farrer
,
C. A.
Nicoll
,
D. A.
Ritchie
, and
A. J.
Shields
,
Nat. Phys.
6
,
947
(
2010
).
34.
E.
del Valle
,
New J. Phys.
15
,
025019
(
2013
).
35.
F.
Troiani
,
J. I.
Perea
, and
C.
Tejedor
,
Phys. Rev. B
74
,
235310
(
2006
).
36.
R. M.
Stevenson
,
C. L.
Salter
,
J.
Nilsson
,
A. J.
Bennett
,
M. B.
Ward
,
I.
Farrer
,
D. A.
Ritchie
, and
A. J.
Shields
,
Phys. Rev. Lett.
108
,
040503
(
2012
).
37.
O.
Benson
,
C.
Santori
,
M.
Pelton
, and
Y.
Yamamoto
,
Phys. Rev. Lett.
84
,
2513
(
2000
).
38.
C.
Sánchez Muñoz
,
F. P.
Laussy
,
C.
Tejedor
, and
E.
del Valle
,
New J. Phys.
17
,
123021
(
2015
).
39.
T.
Seidelmann
,
M.
Cosacchi
,
M.
Cygorek
,
D. E.
Reiter
,
A.
Vagov
, and
V. M.
Axt
,
Adv. Quantum Technol.
4
,
2000108
(
2021
).
40.
P.-L.
Ardelt
,
M.
Koller
,
T.
Simmet
,
L.
Hanschke
,
A.
Bechtold
,
A.
Regler
,
J.
Wierzbowski
,
H.
Riedl
,
J. J.
Finley
, and
K.
Müller
,
Phys. Rev. B
93
,
165305
(
2016
).
41.
F.
Hargart
,
M.
Müller
,
K.
Roy-Choudhury
,
S. L.
Portalupi
,
C.
Schneider
,
S.
Höfling
,
M.
Kamp
,
S.
Hughes
, and
P.
Michler
,
Phys. Rev. B
93
,
115308
(
2016
).
42.
Q.
Mermillod
,
D.
Wigger
,
V.
Delmonte
,
D. E.
Reiter
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
W.
Langbein
,
T.
Kuhn
,
G.
Nogues
, and
J.
Kasprzak
,
Optica
3
,
377
(
2016
).
43.
D. E.
Reiter
,
T.
Kuhn
,
M.
Glässl
, and
V. M.
Axt
,
J. Phys.
26
,
423203
(
2014
).
44.
M.
Reindl
,
K. D.
Jöns
,
D.
Huber
,
C.
Schimpf
,
Y.
Huo
,
V.
Zwiller
,
A.
Rastelli
, and
R.
Trotta
,
Nano Lett.
17
,
4090
(
2017
).
45.
L.
Hanschke
,
K. A.
Fischer
,
S.
Appel
,
D.
Lukin
,
J.
Wierzbowski
,
S.
Sun
,
R.
Trivedi
,
J.
Vucković
,
J. J.
Finley
, and
K.
Müller
,
npj Quantum Inf.
4
,
43
(
2018
).
46.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
47.
M.
Cosacchi
,
M.
Cygorek
,
F.
Ungar
,
A. M.
Barth
,
A.
Vagov
, and
V. M.
Axt
,
Phys. Rev. B
98
,
125302
(
2018
).
48.
Note that in typical experiments the measurements are performed on photons which have already left the cavity. Nevertheless, when the out-coupling of light out of the cavity is considered to be a Markovian process, Eq. (2) can be used to describe G(2)(t,τ) as measured outside of the cavity (cf. Refs. 7 and 15).
49.
D. F. V.
James
,
P. G.
Kwiat
,
W. J.
Munro
, and
A. G.
White
,
Phys. Rev. A
64
,
052312
(
2001
).
50.
W. K.
Wootters
,
Phys. Rev. Lett.
80
,
2245
(
1998
).
51.
C=max{λ1λ2λ3λ4,0} where λjλj+1 are the eigenvalues of ρ2pTρ2pT in decreasing order and T is the antidiagonal matrix with elements {1,1,1,1}.
52.
R. M.
Stevenson
,
A. J.
Hudson
,
A. J.
Bennett
,
R. J.
Young
,
C. A.
Nicoll
,
D. A.
Ritchie
, and
A. J.
Shields
,
Phys. Rev. Lett.
101
,
170501
(
2008
).
53.
Note that in the steady state situation with constant continuous driving, ρ2p and C do not depend on Δt since the statistical operator and the Hamiltonian Ĥ are constant during the measurement process.
You do not currently have access to this content.