Compared with traditional precious metal catalysts, MoS2 is regarded as the promising hydrogen evolution reaction catalyst for Si photocathodes, because of its higher photochemical stability and lower hydrogen adsorption free energy. However, the layers of MoS2 are connected by van der Waals force, and the interaction force between the layers of MoS2 and Si is weak. Therefore, the homogeneous MoS2 nanosheets directly synthesized on Si by the hydrothermal method remain challenging. Herein, we report a facile strategy for the fast and efficient growth of vertically standing MoS2 on pyramid Si via surface hydrophilicity tailoring by inserting a thin TiO2 layer. Thanks to the improved light trapping and catalytic kinetics, the optimal MoS2/TiO2/Si shows a short-circuit photocurrent density of 9.79 mA/cm2 and an onset potential of 0.31 V vs reversible hydrogen electrode under 100 mW/cm2 Xe‐lamp illumination. By comparing with different oxide buffer layers, surface hydrophilicity is found to be essential for promoting the homogenous nucleation and growth of vertically standing MoS2 by the hydrothermal method. These results not only provide valuable insight into the growth kinetics of transition metal chalcogenides in aqueous solution but also deliver an efficient route for assembling noble-metal free catalysts on silicon-based photoelectrodes.

1.
J. N.
Armor
,
Catal. Lett.
101
(
3
),
131
(
2005
).
2.
J. A.
Turner
,
Science
305
(
5686
),
972
(
2004
).
3.
D.
Kim
,
K. K.
Sakimoto
,
D.
Hong
, and
P.
Yang
,
Angew. Chem. Int. Ed. Engl.
54
(
11
),
3259
(
2015
).
4.
M.
Grätzel
,
Nature
414
(
6861
),
338
(
2001
).
5.
X.
Chen
,
S.
Shen
,
L.
Guo
, and
S. S.
Mao
,
Chem. Rev.
110
(
11
),
6503
(
2010
).
6.
M. G.
Walter
,
E. L.
Warren
,
J. R.
McKone
,
S. W.
Boettcher
,
Q.
Mi
,
E. A.
Santori
, and
N. S.
Lewis
,
Chem. Rev.
110
(
11
),
6446
(
2010
).
7.
S. W.
Boettcher
,
J. M.
Spurgeon
,
M. C.
Putnam
,
E. L.
Warren
,
D. B.
Turner-Evans
,
M. D.
Kelzenberg
,
J. R.
Maiolo
,
H. A.
Atwater
, and
N. S.
Lewis
,
Science
327
(
5962
),
185
(
2010
).
8.
M. D.
Kelzenberg
,
S. W.
Boettcher
,
J. A.
Petykiewicz
,
D. B.
Turner-Evans
,
M. C.
Putnam
,
E. L.
Warren
,
J. M.
Spurgeon
,
R. M.
Briggs
,
N. S.
Lewis
, and
H. A.
Atwater
,
Nat. Mater.
9
(
3
),
239
(
2010
).
9.
Y.
Hou
,
B. L.
Abrams
,
P. C. K.
Vesborg
,
M. E.
Björketun
,
K.
Herbst
,
L.
Bech
,
A. M.
Setti
,
C. D.
Damsgaard
,
T.
Pedersen
,
O.
Hansen
,
J.
Rossmeisl
,
S.
Dahl
,
J. K.
Nørskov
, and
I.
Chorkendorff
,
Nat. Mater.
10
(
6
),
434
(
2011
).
10.
J.
Oh
,
H.-C.
Yuan
, and
H. M.
Branz
,
Nat. Nanotechnol.
7
(
11
),
743
(
2012
).
11.
M. J.
Kenney
,
M.
Gong
,
Y.
Li
,
J. Z.
Wu
,
J.
Feng
,
M.
Lanza
, and
H.
Dai
,
Science
342
(
6160
),
836
(
2013
).
12.
J.
Joe
,
H.
Yang
,
C.
Bae
, and
H.
Shin
,
Catalysts
9
(
2
),
149
(
2019
).
13.
R.
Fan
,
Z.
Mi
, and
M.
Shen
,
Opt. Express
27
(
4
),
A51
(
2019
).
14.
N. P.
Dasgupta
,
C.
Liu
,
S.
Andrews
,
F. B.
Prinz
, and
P.
Yang
,
J. Am. Chem. Soc.
135
(
35
),
12932
(
2013
).
15.
P.
Dai
,
J.
Xie
,
M. T.
Mayer
,
X.
Yang
,
J.
Zhan
, and
D.
Wang
,
Angew. Chem.-Int. Ed.
52
(
42
),
11119
(
2013
).
16.
W.
Cai
,
H.
Xiong
,
X.
Su
,
H.
Zhou
,
M.
Shen
, and
L.
Fang
,
Appl. Phys. Lett.
111
(
20
),
203902
(
2017
).
17.
W.-F.
Chen
,
J. T.
Muckerman
, and
E.
Fujita
,
Chem. Commun.
49
(
79
),
8896
(
2013
).
18.
J.
Xie
and
Y.
Xie
,
Chem. –Eur. J.
22
(
11
),
3588
(
2016
).
19.
S. T.
Oyama
,
T.
Gott
,
H.
Zhao
, and
Y.-K.
Lee
,
Catal. Today
143
(
1
),
94
(
2009
).
20.
Y.
Shi
and
B.
Zhang
,
Chem. Soc. Rev.
45
(
6
),
1529
(
2016
).
21.
X.
Zou
and
Y.
Zhang
,
Chem. Soc. Rev.
44
(
15
),
5148
(
2015
).
22.
Q.
Lu
,
Y.
Yu
,
Q.
Ma
,
B.
Chen
, and
H.
Zhang
,
Adv. Mater.
28
(
10
),
1917
(
2016
).
23.
I.
Roger
,
M. A.
Shipman
, and
M. D.
Symes
,
Nat. Rev. Chem.
1
(
1
),
0003
(
2017
).
24.
B.
Hinnemann
,
P. G.
Moses
,
J.
Bonde
,
K. P.
Jørgensen
,
J. H.
Nielsen
,
S.
Horch
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
J. Am. Chem. Soc.
127
(
15
),
5308
(
2005
).
25.
T. F.
Jaramillo
,
K. P.
Jørgensen
,
J.
Bonde
,
J. H.
Nielsen
,
S.
Horch
, and
I.
Chorkendorff
,
Science
317
(
5834
),
100
(
2007
).
26.
Y.
Li
,
H.
Wang
,
L.
Xie
,
Y.
Liang
,
G.
Hong
, and
H.
Dai
,
J. Am. Chem. Soc.
133
(
19
),
7296
(
2011
).
27.
J.
Kibsgaard
,
Z.
Chen
,
B. N.
Reinecke
, and
T. F.
Jaramillo
,
Nat. Mater.
11
(
11
),
963
(
2012
).
28.
A. B.
Laursen
,
S.
Kegnæs
,
S.
Dahl
, and
I.
Chorkendorff
,
Energy Environ. Sci.
5
(
2
),
5577
(
2012
).
29.
J.
Xie
,
H.
Zhang
,
S.
Li
,
R.
Wang
,
X.
Sun
,
M.
Zhou
,
J.
Zhou
,
X. W.
Lou
, and
Y.
Xie
,
Adv. Mater.
25
(
40
),
5807
(
2013
).
30.
D.
Kong
,
H.
Wang
,
J. J.
Cha
,
M.
Pasta
,
K. J.
Koski
,
J.
Yao
, and
Y.
Cui
,
Nano Lett.
13
(
3
),
1341
(
2013
).
31.
Q.
Ding
,
F.
Meng
,
C. R.
English
,
M.
Cabán-Acevedo
,
M. J.
Shearer
,
D.
Liang
,
A. S.
Daniel
,
R. J.
Hamers
, and
S.
Jin
,
J. Am. Chem. Soc.
136
(
24
),
8504
(
2014
).
32.
D.
Hu
,
J.
Xiang
,
Q.
Zhou
,
S.
Su
,
Z.
Zhang
,
X.
Wang
,
M.
Jin
,
L.
Nian
,
R.
Nozel
,
G.
Zhou
,
Z.
Zhang
, and
J.
Liu
,
Nanoscale
10
(
7
),
3518
(
2018
).
33.
T. C.
Dang
,
V. T.
Dang
,
T. D.
Nguyen
,
T. H.
Truong
,
M. T.
Man
,
T. T. H.
Bui
,
T. K. C.
Tran
,
D. L.
Tran
,
P. D.
Truong
,
C. K.
Nguyen
,
V. C.
Nguyen
,
D.-B.
Seo
, and
E.-T.
Kim
,
Mater. Sci. Semicond. Process.
121
,
105308
(
2021
).
34.
S.
Oh
,
J. B.
Kim
,
J. T.
Song
,
J.
Oh
, and
S.-H.
Kim
,
J. Mater. Chem. A
5
(
7
),
3304
(
2017
).
35.
L.
Hao
,
Y.
Liu
,
W.
Gao
,
Z.
Han
,
Q.
Xue
,
H.
Zeng
,
Z.
Wu
,
J.
Zhu
, and
W.
Zhang
,
J. Appl. Phys.
117
(
11
),
114502
(
2015
).
36.
Y.
Zhang
,
Y.
Zhuang
,
L.
Liu
,
P.
Qiu
,
L.
Su
,
X.
Teng
,
G.
Fu
, and
W.
Yu
,
Superlattices Microstruct.
137
,
106352
(
2020
).
37.
H.
Ahmad
,
H.
Rashid
, and
M. F.
Ismail
,
Optik
198
,
163237
(
2019
).
38.
R.
Bose
,
S. K.
Balasingam
,
S.
Shin
,
Z.
Jin
,
D. H.
Kwon
,
Y.
Jun
, and
Y. S.
Min
,
Langmuir
31
(
18
),
5220
(
2015
).
39.
I.
Roger
,
R.
Moca
,
H. N.
Miras
,
K. G.
Crawford
,
D. A. J.
Moran
,
A. Y.
Ganin
, and
M. D.
Symes
,
J. Mater. Chem. A
5
(
4
),
1472
(
2017
).
40.
A.
Jagminas
,
A.
Naujokaitis
,
P.
Gaigalas
,
S.
Ramanavičius
,
M.
Kurtinaitienė
, and
R.
Trusovas
,
Metals
10
(
9
),
1251
(
2020
).
41.
P.
Sahatiya
,
S. S.
Jones
, and
S.
Badhulika
,
Flexible Printed Electron.
3
(
1
),
015002
(
2018
).
42.
G.
Luka
,
B. S.
Witkowski
,
L.
Wachnicki
,
M.
Andrzejczuk
,
M.
Lewandowska
, and
M.
Godlewski
,
CrystEngComm
15
(
46
),
9949
(
2013
).
43.
M.-R.
Gao
,
M. K. Y.
Chan
, and
Y.
Sun
,
Nat. Commun.
6
(
1
),
7493
(
2015
).
44.
S.
Mignuzzi
,
A. J.
Pollard
,
N.
Bonini
,
B.
Brennan
,
I. S.
Gilmore
,
M. A.
Pimenta
,
D.
Richards
, and
D.
Roy
,
Phys. Rev. B
91
(
19
),
195411
(
2015
).
45.
S.
Bae
,
N.
Sugiyama
,
T.
Matsuo
,
H.
Raebiger
,
K-i
Shudo
, and
K.
Ohno
,
Phys. Rev. Appl.
7
(
2
),
024001
(
2017
).
46.
J.
Xie
,
J.
Zhang
,
S.
Li
,
F.
Grote
,
X.
Zhang
,
H.
Zhang
,
R.
Wang
,
Y.
Lei
,
B.
Pan
, and
Y.
Xie
,
J. Am. Chem. Soc.
135
(
47
),
17881
(
2013
).
47.
H.
Li
,
C.
Tsai
,
A. L.
Koh
,
L.
Cai
,
A. W.
Contryman
,
A. H.
Fragapane
,
J.
Zhao
,
H. S.
Han
,
H. C.
Manoharan
,
F.
Abild-Pedersen
,
J. K.
Nørskov
, and
X.
Zheng
,
Nat. Mater.
15
(
1
),
48
(
2016
).
48.
I. S.
Kim
,
R. T.
Haasch
,
D. H.
Cao
,
O. K.
Farha
,
J. T.
Hupp
,
M. G.
Kanatzidis
, and
A. B.
Martinson
,
ACS Appl. Mater. Interfaces
8
(
37
),
24310
(
2016
).
49.
A. C.
Bronneberg
,
C.
Höhn
, and
R.
van de Krol
,
J. Phys. Chem. C
121
(
10
),
5531
(
2017
).
50.
W.
Zhou
,
Z.
Yin
,
Y.
Du
,
X.
Huang
,
Z.
Zeng
,
Z.
Fan
,
H.
Liu
,
J.
Wang
, and
H.
Zhang
,
Small
9
(
1
),
140
(
2013
).
51.
Q.
Xiang
,
J.
Yu
, and
M.
Jaroniec
,
J. Am. Chem. Soc.
134
(
15
),
6575
(
2012
).
52.
D. K.
Owens
and
R. C.
Wendt
,
J. Appl. Polym. Sci.
13
(
8
),
1741
(
1969
).
53.
A.
Vittadini
,
A.
Selloni
,
F. P.
Rotzinger
, and
M.
Grätzel
,
Phys. Rev. Lett.
81
(
14
),
2954
(
1998
).
54.
N.
Shibata
,
A.
Goto
,
S.-Y.
Choi
,
T.
Mizoguchi
,
S. D.
Findlay
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Science
322
(
5901
),
570
(
2008
).
55.
Y.
Wang
,
H.
Sun
,
S.
Tan
,
H.
Feng
,
Z.
Cheng
,
J.
Zhao
,
A.
Zhao
,
B.
Wang
,
Y.
Luo
,
J.
Yang
, and
J. G.
Hou
,
Nat. Commun.
4
(
1
),
2214
(
2013
).

Supplementary Material

You do not currently have access to this content.