Confirming the dopant site of In3+-doped SrTiO3 (In–STO) is essential to reveal the mechanism of its photocatalytic activity. In a previous study, x-ray absorption spectroscopic analysis and theoretical investigations were performed to discuss the dopant site, and In3+–Ti4+ substitution was proposed. However, direct confirmation of the In3+ dopant site has not yet been reported. Here, we performed direct atomic-scale imaging of In–STO crystals via analytical transmission electron microscopy and revealed the dopant site based on real-space elemental mapping. The Ti and Sr sites in the SrTiO3 crystal lattice were well identified by atomic column elemental mapping using energy dispersive x-ray spectroscopy (EDS). The EDS signal of indium has a stronger intensity at the Ti site than at the Sr site, based on the total analysis of each Ti and Sr atomic column. By applying principal component analysis on the raw EDS spectral imaging data cube, the indium site was clearly imaged; it completely fit into the Ti atomic column positions. These results provide direct evidence of In–Ti substitution in In-STO photocatalysts.

1.
K.
Domen
,
S.
Naito
,
M.
Soma
,
T.
Onishi
, and
K.
Tamaru
,
J. Chem. Soc.
1980
,
543
.
2.
Y.
Ham
,
T.
Hisatomi
,
Y.
Goto
,
Y.
Moriya
,
Y.
Sakata
,
A.
Yamakata
,
J.
Kubota
, and
K.
Domen
,
J. Mater. Chem. A
4
,
3027
(
2016
).
3.
T. H.
Chiang
,
H.
Lyu
,
T.
Hisatomi
,
Y.
Goto
,
T.
Takata
,
M.
Katayama
,
T.
Minegishi
, and
K.
Domen
,
ACS Catal.
8
,
2782
(
2018
).
4.
Y.
Sakata
,
Y.
Miyoshi
,
T.
Maeda
,
K.
Ishikiriyama
,
Y.
Yamazaki
,
H.
Imamura
,
Y.
Ham
,
T.
Hisatomi
,
J.
Kubota
, and
A.
Yamakata
,
Appl. Catal. A
521
,
227
(
2016
).
5.
Q.
Wang
,
T.
Hisatomi
,
Q.
Jia
,
H.
Tokudome
,
M.
Zhong
,
C.
Wang
,
Z.
Pan
,
T.
Takata
,
M.
Nakabayashi
, and
N.
Shibata
,
Nat. Mater.
15
,
611
(
2016
).
6.
Y.
Goto
,
T.
Hisatomi
,
Q.
Wang
,
T.
Higashi
,
K.
Ishikiriyama
,
T.
Maeda
,
Y.
Sakata
,
S.
Okunaka
,
H.
Tokudome
, and
M.
Katayama
,
Joule
2
,
509
(
2018
).
7.
T.
Takata
and
K.
Domen
,
J. Phys. Chem. C
113
,
19386
(
2009
).
8.
Y.
Kim
,
M.
Watanabe
,
A.
Takagaki
,
J.
Matsuda
, and
T.
Ishihara
,
ChemCatChem
11
,
6270
(
2019
).
9.
H.
Sudrajat
,
M. M.
Fadlallah
,
S.
Tao
,
M.
Kitta
,
N.
Ichikuni
, and
H.
Onishi
,
Phys. Chem. Chem. Phys.
22
,
19178
(
2020
).
10.
P. M.
Voyles
,
D. A.
Muller
,
J. L.
Grazul
,
P. H.
Citrin
, and
H.-J. L.
Gossmann
,
Nature
416
,
826
(
2002
).
11.
P. M.
Voyles
,
J. L.
Grazul
, and
D. A.
Muller
,
Ultramicroscopy
96
,
251
(
2003
).
12.
S.
Wang
,
A. Y.
Borisevich
,
S. N.
Rashkeev
,
K.
Sohlberg
,
M. V.
Glazoff
,
S. J.
Pennycook
, and
S. T.
Pantelides
,
Nat. Mater.
3
,
143
(
2004
).
13.
S. H.
Oh
,
K.
van Benthem
,
S. I.
Molina
,
A. Y.
Borisevich
,
W.
Luo
,
P.
Werner
,
N. D.
Zakharov
,
D.
Kumar
,
S. T.
Pantelides
, and
S. J.
Pennycook
,
Nano Lett.
8
,
1016
(
2008
).
14.
K.
Kimoto
,
R.-J.
Xie
,
Y.
Matsui
,
K.
Ishizuka
, and
N.
Hirosaki
,
Appl. Phys. Lett.
94
,
041908
(
2009
).
15.
S.-Y.
Choi
,
S.-Y.
Chung
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Adv. Mater.
21
,
885
(
2009
).
16.
R.
Ishikawa
,
N.
Shibata
,
T.
Taniguchi
, and
Y.
Ikuhara
,
Phys. Rev. Appl.
13
,
034064
(
2020
).
17.
G.
Kothleitner
,
J.
Neish
,
M. R.
Lugg
,
N. D.
Findlay
,
S. W.
Grogger
,
F.
Hofer
, and
L. J.
Allen
,
Phys. Rev. Lett.
112
,
085501
(
2014
).
18.
P.
Lu
,
L.
Zhou
,
M. J.
Kramer
, and
D.,J.
Smith
,
Sci. Rep.
4
,
3945
(
2014
).
19.
B.
Feng
,
T.
Yokoi
,
A.
Kumamoto
,
M.
Yoshiya
,
Y.
Ikuhara
, and
N.
Shibata
,
Nat. Commun.
7
,
11079
(
2016
).
20.
P.
Gao
,
R.
Ishikawa
,
B.
Feng
,
A.
Kumamoto
,
N.
Shibata
, and
Y.
Ikuhara
,
Ultramicroscopy
184
,
217
(
2018
).
21.
P.
Lu
,
E.
Romero
,
S.
Lee
,
J. L.
MacManus-Driscoll
, and
Q.
Jia
,
Microsc. Microanal.
20
,
1782
(
2014
).
22.
Z.
Chen
,
M.
Weyland
,
X.
Sang
,
W.
Xu
,
J. H.
Dycus
,
J. M.
LeBeau
,
A. J.
D'Alfonso
,
L. J.
Allen
, and
S. D.
Findlay
,
Ultramicroscopy
168
,
7
(
2016
).
23.
P.
Lu
,
J. M.
Moya
,
R.
Yuan
, and
J. M.
Zuo
,
Ultramicroscopy
186
,
23
(
2018
).
24.
M.
Watanabe
and
D. B.
Williams
,
Ultramicroscopy
78
,
89
(
1999
).
25.
M.
Watanabe
,
D. B.
Williams
, and
Y.
Tomokiyo
,
Micron
34
,
173
(
2003
).
26.
P. G.
Kotula
,
D. O.
Klenov
, and
H. S.
von Harrach
,
Microsc. Microanal.
18
,
691
(
2012
).
27.
See https://analyticalscience.wiley.com/do/10.1002/micro.483/full/ for “information about theoretical and procedure details of PCA” (last accessed January 28,
2021
).
28.
See https://www.hremresearch.com/Old/index.html for “information about software details of MSA plug-in by HREM” (last accessed January 28,
2021
).
29.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).

Supplementary Material

You do not currently have access to this content.