We present room temperature memristive switching in a nano-patterned LaAlO3/SrTiO3 wire with laterally defined gates in proximity to the wire. Closed bias voltage sweeps show pinched hysteresis loops with zero bias resistance values of up to Ron = 8 MΩ and Roff = 1.2 GΩ for the on and off state, respectively. The maximum Roff/Ron ratio is 150. Frequency dependent measurements show a cutoff frequency of around 10 Hz, and the alteration of set point voltages enables us to precisely set and control the resistance off-on ratio. We explain the memristive switching by charge localization on the laterally defined gates, which couple capacitively to the wire and enhance or decrease the resistance dependent on the amount of transferred charges. Our finding enables the realization of geometry-based memristive switching devices, which make use of the form-dependent wire-gate capacitance.

1.
L. O.
Chua
,
IEEE Trans. Circuit Theory
18
,
507
(
1971
).
2.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
,
80
(
2008
).
3.
S.
Vongehr
and
X.
Meng
,
Sci. Rep.
5
,
11657
(
2015
).
4.
L. O.
Chua
and
S. M.
Kang
,
Proc. IEEE
64
,
2
(
1976
).
5.
H.
Akinaga
and
H.
Shima
,
Proc. IEEE
98
,
2237
(
2010
).
6.
I.
Valov
,
R.
Waser
,
J. R.
Jameson
, and
M. N.
Kozicki
,
Nanotechnology
22
,
289502
(
2011
).
7.
B. J.
Choi
,
D. S.
Jeong
,
S. K.
Kim
,
C.
Rohde
,
S.
Choi
,
J. H.
Oh
,
H. J.
Kim
,
C. S.
Hwang
,
K.
Szot
,
R.
Waser
,
B.
Reichenberg
, and
S.
Tiedke
,
J. Appl. Phys.
98
(
3
),
033715
(
2005
).
8.
K.
Szot
,
W.
Speier
,
G.
Bihlmayer
, and
R.
Waser
,
Nat. Mater.
5
,
312
(
2006
).
9.
A.
Wedig
,
M.
Luebben
,
D. Y.
Cho
,
M.
Moors
,
K.
Skaja
,
V.
Rana
,
T.
Hasegawa
,
K. K.
Adepalli
,
B.
Yildiz
,
R.
Waser
, and
I.
Valov
,
Nat. Nanotechnol.
11
,
67
(
2016
).
10.
A. S.
Goossens
,
A.
Das
, and
T.
Banerjee
,
J. Appl. Phys.
124
,
152102
(
2018
).
11.
B. J.
Choi
,
J.
Zhang
,
K.
Norris
,
G.
Gibson
,
K. M.
Kim
,
W.
Jackson
,
M. X. M.
Zhang
,
Z.
Li
,
J. J.
Yang
, and
R. S.
Williams
,
Adv. Mater.
28
,
356
(
2016
).
12.
S.
Wu
,
X.
Luo
,
S.
Turner
,
H.
Peng
,
W.
Lin
,
J.
Ding
,
A.
David
,
B.
Wang
,
G.
Van Tendeloo
,
J.
Wang
, and
T.
Wu
,
Phys. Rev. X
3
,
1
(
2013
).
13.
X. G.
Chen
,
X. B.
Ma
,
Y. C. B.
Yang
,
L. P.
Chen
,
G. C.
Xiong
,
G. J.
Lian
,
Y. C. B.
Yang
, and
J. B.
Yang
,
Appl. Phys. Lett.
98
,
122102
(
2011
).
14.
Q. A.
Vu
,
H.
Kim
,
V. L.
Nguyen
,
U. Y.
Won
,
S.
Adhikari
,
K.
Kim
,
Y. H.
Lee
, and
W. J.
Yu
,
Adv. Mater.
29
,
44
(
2017
).
15.
I.
Orak
,
M.
Ürel
,
G.
Bakan
, and
A.
Dana
,
Appl. Phys. Lett.
106
,
233506
(
2015
).
16.
S.
Yu
,
H. Y.
Chen
,
B.
Gao
,
J.
Kang
, and
H. S. P.
Wong
,
ACS Nano
7
,
2320
(
2013
).
17.
M. J.
Lee
,
C. B.
Lee
,
D.
Lee
,
S. R.
Lee
,
M.
Chang
,
J. H.
Hur
,
Y. B.
Kim
,
C. J.
Kim
,
D. H.
Seo
,
S.
Seo
,
U. I.
Chung
,
I. K.
Yoo
, and
K.
Kim
,
Nat. Mater.
10
,
625
(
2011
).
18.
H.
Yamada
,
V.
Garcia
,
S.
Fusil
,
S.
Boyn
,
M.
Marinova
,
A.
Gloter
,
S.
Xavier
,
J.
Grollier
,
E.
Jacquet
,
C.
Carrétéro
,
C.
Deranlot
,
M.
Bibes
, and
A.
Barthélémy
,
ACS Nano
7
,
5385
(
2013
).
19.
P.
Maier
,
F.
Hartmann
,
J.
Gabel
,
M.
Frank
,
S.
Kuhn
,
P.
Scheiderer
,
B.
Leikert
,
M.
Sing
,
L.
Worschech
,
R.
Claessen
, and
S.
Höfling
,
Appl. Phys. Lett.
110
,
093506
(
2017
).
20.
A.
Ohtomo
and
H. Y.
Hwang
,
Nature
427
,
423
(
2004
).
21.
S.
Thiel
,
G.
Hammerl
,
A.
Schmehl
,
C. W.
Schneider
, and
J.
Mannhart
,
Science
312
,
5795
(
2006
).
22.
A. D.
Caviglia
,
M.
Gabay
,
S.
Gariglio
,
N.
Reyren
,
C.
Cancellieri
, and
J. M.
Triscone
,
Phys. Rev. Lett.
104
,
1
(
2010
).
23.
K.
Gopinadhan
,
A.
Annadi
,
Y.
Kim
,
A.
Srivastava
,
B.
Kumar
,
J.
Chen
,
J. M. D.
Coey
,
Ariando
, and
T.
Venkatesan
,
Adv. Electron. Mater.
1
,
1
(
2015
).
24.
C. W.
Schneider
,
S.
Thiel
,
G.
Hammerl
,
C.
Richter
, and
J.
Mannhart
,
Appl. Phys. Lett.
89
,
122101
(
2006
).
25.
L.
Chua
,
Semicond. Sci. Technol.
29
,
104001
(
2014
).
26.
S. K.
Kim
,
S. I.
Kim
,
H.
Lim
,
D. S.
Jeong
,
B.
Kwon
,
S. H.
Baek
, and
J. S.
Kim
,
Sci. Rep.
5
,
8023
(
2015
).
27.
A.
Marent
,
T.
Nowozin
,
M.
Geller
, and
D.
Bimberg
,
Semicond. Sci. Technol.
26
,
014026
(
2011
).
28.
C.
Riggert
,
M.
Ziegler
,
D.
Schroeder
,
W. H.
Krautschneider
, and
H.
Kohlstedt
,
Semicond. Sci. Technol.
29
,
104011
(
2014
).
29.
M.
Ziegler
,
M.
Oberländer
,
D.
Schroeder
,
W. H.
Krautschneider
, and
H.
Kohlstedt
,
Appl. Phys. Lett.
101
,
263504
(
2012
).
30.
M.
Ziegler
and
H.
Kohlstedt
,
J. Appl. Phys.
114
(
19
),
194506
(
2013
).
31.
A.
Müller
,
C.
Şahin
,
M. Z.
Minhas
,
B.
Fuhrmann
,
M. E.
Flatté
, and
G.
Schmidt
,
Phys. Rev. Appl.
11
,
1
(
2019
).
32.
P.
Maier
,
F.
Hartmann
,
M.
Emmerling
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
, and
L.
Worschech
,
Phys. Rev. Appl.
5
,
5
(
2016
).
33.
F.
Hartmann
,
P.
Maier
,
M. R.
Sousa Dias
,
S.
Göpfert
,
L. K.
Castelano
,
M.
Emmerling
,
C.
Schneider
,
S.
Höfling
,
M.
Kamp
,
Y. V.
Pershin
,
G. E.
Marques
,
V.
Lopez-Richard
, and
L.
Worschech
,
Nano Lett.
17
,
2273
(
2017
).
34.
D.
Biolek
,
Z.
Biolek
, and
V.
Biolková
,
Electron. Lett.
50
,
74
(
2014
).
35.
K. X.
Jin
,
W.
Lin
,
B. C.
Luo
, and
T.
Wu
,
Sci. Rep.
5
,
8778
(
2015
).
36.
R.
Waser
and
M.
Aono
,
Nanosci. Technol. A
6
,
158
(
2009
).

Supplementary Material

You do not currently have access to this content.