In MoS2 field-effect transistors, the current or voltage fluctuations related to either mobility- or number-dependent relationships are characterized by low-frequency noise. This noise can typically be used to evaluate the application limits of MoS2-based electronic devices. In this work, the low-frequency noise characteristics of single-crystal bilayer MoS2 grown by chemical vapor deposition (CVD) are systematically investigated and found to offer significant performance improvements compared with those based on the monolayer MoS2 channel. At f = 100 Hz, the normalized drain current power spectral density (SI/Id2) is 2.4 × 10βˆ’10 Hzβˆ’1 and 3.1 × 10βˆ’9 Hzβˆ’1 for bilayer and monolayer MoS2 transistors, respectively. The 1/f noise behavior can be accurately described by McWhorter's carrier number fluctuation model for both transistor types, suggesting that carrier trapping and de-trapping by dielectric defects is the dominant mechanism of 1/f noise in CVD MoS2 transistors. Furthermore, a minimal WLSI/Id2 of 3.1 × 10βˆ’10β€ˆΞΌm2/Hz (where W is the gate width and L is the gate length) is achieved at Vbg = 3 V by effectively reducing the contact resistance of bilayer MoS2 transistors using a back-gate voltage. These results demonstrate that CVD bilayer MoS2 is a promising candidate for future large-scale 2D-semiconductor-based electronic applications with improved noise performance.

1.
X.
β€ˆ
Zhang
,
J.
β€ˆ
Grajal
,
J. L.
β€ˆ
Vazquez-Roy
,
U.
β€ˆ
Radhakrishna
,
X.
β€ˆ
Wang
,
W.
β€ˆ
Chern
,
L.
β€ˆ
Zhou
,
Y.
β€ˆ
Lin
,
P.-C.
β€ˆ
Shen
,
X.
β€ˆ
Ji
,
X.
β€ˆ
Ling
,
A.
β€ˆ
Zubair
,
Y.
β€ˆ
Zhang
,
H.
β€ˆ
Wang
,
M.
β€ˆ
Dubey
,
J.
β€ˆ
Kong
,
M.
β€ˆ
Dresselhaus
, and
T.
β€ˆ
Palacios
,
Nature
β€ˆ
566
(
7744
),
368
(
2019
).
2.
Z.
β€ˆ
Lin
,
Y.
β€ˆ
Liu
,
U.
β€ˆ
Halim
,
M.
β€ˆ
Ding
,
Y.
β€ˆ
Liu
,
Y.
β€ˆ
Wang
,
C.
β€ˆ
Jia
,
P.
β€ˆ
Chen
,
X.
β€ˆ
Duan
,
C.
β€ˆ
Wang
,
F.
β€ˆ
Song
,
M.
β€ˆ
Li
,
C.
β€ˆ
Wan
,
Y.
β€ˆ
Huang
, and
X.
β€ˆ
Duan
,
Nature
β€ˆ
562
(
7726
),
254
(
2018
).
3.
S. B.
β€ˆ
Desai
,
S. R.
β€ˆ
Madhvapathy
,
A. B.
β€ˆ
Sachid
,
J. P.
β€ˆ
Llinas
,
Q.
β€ˆ
Wang
,
G. H.
β€ˆ
Ahn
,
G.
β€ˆ
Pitner
,
M. J.
β€ˆ
Kim
,
J.
β€ˆ
Bokor
,
C.
β€ˆ
Hu
,
H. S. P.
β€ˆ
Wong
, and
A.
β€ˆ
Javey
,
Science
β€ˆ
354
(
6308
),
99
(
2016
).
4.
H.
β€ˆ
Wang
,
L.
β€ˆ
Yu
,
Y.-H.
β€ˆ
Lee
,
Y.
β€ˆ
Shi
,
A.
β€ˆ
Hsu
,
M. L.
β€ˆ
Chin
,
L.-J.
β€ˆ
Li
,
M.
β€ˆ
Dubey
,
J.
β€ˆ
Kong
, and
T.
β€ˆ
Palacios
,
Nano Lett.
β€ˆ
12
(
9
),
4674
(
2012
).
5.
S.
β€ˆ
Wachter
,
D. K.
β€ˆ
Polyushkin
,
O.
β€ˆ
Bethge
, and
T.
β€ˆ
Mueller
,
Nat. Commun.
β€ˆ
8
(
1
),
14948
(
2017
).
6.
Q.
β€ˆ
Gao
,
Z.
β€ˆ
Zhang
,
X.
β€ˆ
Xu
,
J.
β€ˆ
Song
,
X.
β€ˆ
Li
, and
Y.
β€ˆ
Wu
,
Nat. Commun.
β€ˆ
9
(
1
),
4778
(
2018
).
7.
X.
β€ˆ
Xie
,
D.
β€ˆ
Sarkar
,
W.
β€ˆ
Liu
,
J.
β€ˆ
Kang
,
O.
β€ˆ
Marinov
,
M. J.
β€ˆ
Deen
, and
K.
β€ˆ
Banerjee
,
ACS Nano
β€ˆ
8
(
6
),
5633
(
2014
).
8.
M.
β€ˆ
Haartman
and
M.
β€ˆ
Γ–stling
,
Low-Frequency Noise in Advanced MOS Devices
(
Springer
,
Dordrecht, The Netherlands
,
2007
).
9.
Y.
β€ˆ
Liu
,
H.
β€ˆ
He
,
Y.
β€ˆ
Chen
,
R.
β€ˆ
Chen
,
L.
β€ˆ
Wang
,
S.
β€ˆ
Cai
, and
X.
β€ˆ
Xiong
,
IEEE Trans. Electron Devices
β€ˆ
66
(
5
),
2192
(
2019
).
10.
P.
β€ˆ
Karnatak
,
T.
β€ˆ
Paul
,
S.
β€ˆ
Islam
, and
A.
β€ˆ
Ghosh
,
Adv. Phys.-X
β€ˆ
2
(
2
),
428
(
2017
).
11.
L. K. J.
β€ˆ
Vandamme
,
IEEE Trans. Electron Devices
β€ˆ
41
(
11
),
2176
(
1994
).
12.
L. K. J.
β€ˆ
Vandamme
,
L.
β€ˆ
Xiaosong
, and
D.
β€ˆ
Rigaud
,
IEEE Trans. Electron Devices
β€ˆ
41
(
11
),
1936
(
1994
).
13.
X.
β€ˆ
Li
,
X.
β€ˆ
Xiong
,
T.
β€ˆ
Li
,
S.
β€ˆ
Li
,
Z.
β€ˆ
Zhang
, and
Y.
β€ˆ
Wu
,
ACS Appl. Mater. Interfaces
β€ˆ
9
(
51
),
44602
(
2017
).
14.
M.
β€ˆ
Tian
,
Q.
β€ˆ
Hu
,
C.
β€ˆ
Gu
,
X.
β€ˆ
Xiong
,
Z.
β€ˆ
Zhang
,
X.
β€ˆ
Li
, and
Y.
β€ˆ
Wu
,
ACS Appl. Mater. Interfaces
β€ˆ
12
(
15
),
17686
(
2020
).
15.
X.
β€ˆ
Nie
,
M.
β€ˆ
Zhang
,
H.
β€ˆ
Zhu
,
L.
β€ˆ
Chen
,
Q.
β€ˆ
Sun
, and
D. W.
β€ˆ
Zhang
,
IEEE Electron Device Lett.
β€ˆ
39
(
5
),
739
(
2018
).
16.
S. L.
β€ˆ
Rumyantsev
,
C.
β€ˆ
Jiang
,
R.
β€ˆ
Samnakay
,
M. S.
β€ˆ
Shur
, and
A. A.
β€ˆ
Balandin
,
IEEE Electron Device Lett.
β€ˆ
36
(
5
),
517
(
2015
).
17.
V. K.
β€ˆ
Sangwan
,
H. N.
β€ˆ
Arnold
,
D.
β€ˆ
Jariwala
,
T. J.
β€ˆ
Marks
,
L. J.
β€ˆ
Lauhon
, and
M. C.
β€ˆ
Hersam
,
Nano Lett.
β€ˆ
13
(
9
),
4351
(
2013
).
18.
T.-Y.
β€ˆ
Kim
,
Y.
β€ˆ
Song
,
K.
β€ˆ
Cho
,
M.
β€ˆ
Amani
,
G.
β€ˆ
Ho Ahn
,
J.-K.
β€ˆ
Kim
,
J.
β€ˆ
Pak
,
S.
β€ˆ
Chung
,
A.
β€ˆ
Javey
, and
T.
β€ˆ
Lee
,
Nanotechnology
β€ˆ
28
(
14
),
145702
(
2017
).
19.
J.-K.
β€ˆ
Kim
,
Y.
β€ˆ
Song
,
T.-Y.
β€ˆ
Kim
,
K.
β€ˆ
Cho
,
J.
β€ˆ
Pak
,
B. Y.
β€ˆ
Choi
,
J.
β€ˆ
Shin
,
S.
β€ˆ
Chung
, and
T.
β€ˆ
Lee
,
Nanotechnology
β€ˆ
28
(
47
),
47LT01
(
2017
).
20.
D.
β€ˆ
Sharma
,
M.
β€ˆ
Amani
,
A.
β€ˆ
Motayed
,
P. B.
β€ˆ
Shah
,
A. G.
β€ˆ
Birdwell
,
S.
β€ˆ
Najmaei
,
P. M.
β€ˆ
Ajayan
,
J.
β€ˆ
Lou
,
M.
β€ˆ
Dubey
,
Q.
β€ˆ
Li
, and
A. V.
β€ˆ
Davydov
,
Nanotechnology
β€ˆ
25
(
15
),
155702
(
2014
).
21.
J.-W.
β€ˆ
Wang
,
Y.-P.
β€ˆ
Liu
,
P.-H.
β€ˆ
Chen
,
M.-H.
β€ˆ
Chuang
,
A.
β€ˆ
Pezeshki
,
D.-C.
β€ˆ
Ling
,
J.-C.
β€ˆ
Chen
,
Y.-F.
β€ˆ
Chen
, and
Y.-H.
β€ˆ
Lee
,
Adv. Electron. Mater.
β€ˆ
4
(
1
),
1700340
(
2018
).
22.
K.
β€ˆ
Hsieh
,
V.
β€ˆ
Kochat
,
X.
β€ˆ
Zhang
,
Y.
β€ˆ
Gong
,
C. S.
β€ˆ
Tiwary
,
P. M.
β€ˆ
Ajayan
, and
A.
β€ˆ
Ghosh
,
Nano Lett.
β€ˆ
17
(
9
),
5452
(
2017
).
23.
Z.
β€ˆ
Zhang
,
X.
β€ˆ
Xu
,
J.
β€ˆ
Song
,
Q.
β€ˆ
Gao
,
S.
β€ˆ
Li
,
Q.
β€ˆ
Hu
,
X.
β€ˆ
Li
, and
Y.
β€ˆ
Wu
,
Appl. Phys. Lett.
β€ˆ
113
(
20
),
202103
(
2018
).
24.
A.
β€ˆ
Zobel
,
A.
β€ˆ
Boson
,
P. M.
β€ˆ
Wilson
,
D. S.
β€ˆ
Muratov
,
D. V.
β€ˆ
Kuznetsov
, and
A.
β€ˆ
Sinitskii
,
J. Mater. Chem. C
β€ˆ
4
(
47
),
11081
(
2016
).
25.
J.
β€ˆ
Zheng
,
X.
β€ˆ
Yan
,
Z.
β€ˆ
Lu
,
H.
β€ˆ
Qiu
,
G.
β€ˆ
Xu
,
X.
β€ˆ
Zhou
,
P.
β€ˆ
Wang
,
X.
β€ˆ
Pan
,
K.
β€ˆ
Liu
, and
L.
β€ˆ
Jiao
,
Adv. Mater.
β€ˆ
29
(
13
),
1604540
(
2017
).
26.
H.-J.
β€ˆ
Kwon
,
H.
β€ˆ
Kang
,
J.
β€ˆ
Jang
,
S.
β€ˆ
Kim
, and
C. P.
β€ˆ
Grigoropoulos
,
Appl. Phys. Lett.
β€ˆ
104
(
8
),
083110
(
2014
).
27.
N.
β€ˆ
Kaushik
,
S.
β€ˆ
Ghosh
, and
S.
β€ˆ
Lodha
,
IEEE Trans. Electron Devices
β€ˆ
65
(
10
),
4135
(
2018
).
28.
F. N.
β€ˆ
Hooge
,
IEEE Trans. Electron Devices
β€ˆ
41
(
11
),
1926
(
1994
).
29.
L. K. J.
β€ˆ
Vandamme
and
F. N.
β€ˆ
Hooge
,
IEEE Trans. Electron Devices
β€ˆ
55
(
11
),
3070
(
2008
).
30.
J.
β€ˆ
Na
,
M.-K.
β€ˆ
Joo
,
M.
β€ˆ
Shin
,
J.
β€ˆ
Huh
,
J.-S.
β€ˆ
Kim
,
M.
β€ˆ
Piao
,
J.-E.
β€ˆ
Jin
,
H.-K.
β€ˆ
Jang
,
H. J.
β€ˆ
Choi
,
J. H.
β€ˆ
Shim
, and
G.-T.
β€ˆ
Kim
,
Nanoscale
β€ˆ
6
(
1
),
433
(
2014
).
31.
D.
β€ˆ
Sharma
,
A.
β€ˆ
Motayed
,
P. B.
β€ˆ
Shah
,
M.
β€ˆ
Amani
,
M.
β€ˆ
Georgieva
,
A.
β€ˆ
Glen Birdwell
,
M.
β€ˆ
Dubey
,
Q.
β€ˆ
Li
, and
A. V.
β€ˆ
Davydov
,
Appl. Phys. Lett.
β€ˆ
107
(
16
),
162102
(
2015
).
32.
T.
β€ˆ
Chu
,
H.
β€ˆ
Ilatikhameneh
,
G.
β€ˆ
Klimeck
,
R.
β€ˆ
Rahman
, and
Z.
β€ˆ
Chen
,
Nano Lett.
β€ˆ
15
(
12
),
8000
(
2015
).
33.
J.
β€ˆ
Kwon
,
J. H.
β€ˆ
Park
,
C. J.
β€ˆ
Delker
,
C. T.
β€ˆ
Harris
,
B.
β€ˆ
Swartzentruber
,
S. R.
β€ˆ
Das
, and
D. B.
β€ˆ
Janes
,
Appl. Phys. Lett.
β€ˆ
114
(
11
),
113502
(
2019
).
34.
J.
β€ˆ
Renteria
,
R.
β€ˆ
Samnakay
,
S. L.
β€ˆ
Rumyantsev
,
C.
β€ˆ
Jiang
,
P.
β€ˆ
Goli
,
M. S.
β€ˆ
Shur
, and
A. A.
β€ˆ
Balandin
,
Appl. Phys. Lett.
β€ˆ
104
(
15
),
153104
(
2014
).
35.
X.
β€ˆ
Li
,
T.
β€ˆ
Li
,
Z.
β€ˆ
Zhang
,
X.
β€ˆ
Xiong
,
S.
β€ˆ
Li
, and
Y.
β€ˆ
Wu
,
IEEE Electron Device Lett.
β€ˆ
39
(
1
),
131
(
2018
).
36.
S.
β€ˆ
Lee
,
T.
β€ˆ
Bang
,
C.
β€ˆ
Kim
,
K.
β€ˆ
Hwang
,
B. C.
β€ˆ
Jang
,
D.
β€ˆ
Moon
,
H.
β€ˆ
Bae
,
M.
β€ˆ
Seo
,
S.
β€ˆ
Kim
,
D.
β€ˆ
Kim
,
S.
β€ˆ
Choi
, and
Y.
β€ˆ
Choi
,
IEEE Electron Device Lett.
β€ˆ
38
(
8
),
1008
(
2017
).
37.
S.
β€ˆ
Ghatak
,
S.
β€ˆ
Mukherjee
,
M.
β€ˆ
Jain
,
D. D.
β€ˆ
Sarma
, and
A.
β€ˆ
Ghosh
,
APL Mater.
β€ˆ
2
(
9
),
092515
(
2014
).
You do not currently have access to this content.