Reverberation chambers are currently used to test electromagnetic compatibility as well as to characterize antenna efficiency, wireless devices, and MIMO systems. The related measurements are based on statistical averages and their fluctuations. We introduce a very efficient mode stirring process based on electronically reconfigurable metasurfaces (ERMs). By locally changing the field boundary conditions, the ERMs allow us to generate a humongous number of uncorrelated field realizations even within small reverberation chambers. We fully experimentally characterize this stirring process by determining these uncorrelated realizations via the autocorrelation function of the transmissions. The uniformity criterion parameter σdB, as defined in the IEC 61000-4-21 standard, is also investigated and reveals the performance of this stirring. The effect of short paths on the two presented quantities is identified. We compare the experimental results on the uniformity criterion parameter with a corresponding model based on random matrix theory and find good agreement, where the only parameter, the modal overlap, is extracted by the quality factor.

1.
B.
Démoulin
and
P.
Besnier
,
Electromagnetic Reverberation Chambers
(
John Wiley & Sons
,
Hoboken, NJ, USA
,
2011
).
2.
D. A.
Hill
,
Electromagnetic Fields in Cavities: Deterministic and Statistical Theories
, IEEE Press Series on Electromagnetic Wave Theory (
Wiley
,
2009
).
3.
S. J.
Boyes
and
Y.
Huang
,
Reverberation Chambers: Theory and Applications to EMC and Antenna Measurements
(
John Wiley & Sons
,
Ltd, Chichester, UK
,
2016
), Chap. 4, pp.
94
128
.
4.
P.
Corona
,
A.
de Bonitatibus
, and
E.
Paolini
, “
In order to evaluate in reverberating chamber the radiated power of transmitting equipments
,” in
IEEE International Symposium on Electromagnetic Compatibility
(
IEEE
,
1981
), pp. 1–
2
.
5.
P.
Corona
,
J.
Ladbury
, and
G.
Latmiral
, “
Reverberation-chamber research-then and now: A review of early work and comparison with current understanding
,”
IEEE Trans. Electromagn. Compat.
44
,
87
94
(
2002
).
6.
C.
Holloway
,
D.
Hill
,
J.
Ladbury
,
G.
Koepke
, and
R.
Garzia
, “
Shielding effectiveness measurements of materials using nested reverberation chambers
,”
IEEE Trans. Electromagn. Compat.
45
,
350
356
(
2003
).
7.
F.
Leferink
,
R.
Serra
, and
H.
Schipper
, “
Microwave-range shielding effectiveness measurements using a dual vibrating intrinsic reverberation chamber
,” in
42nd European Microwave Conference
(
IEEE
,
2012
), pp.
344
347
.
8.
E.
Amador
,
M. I.
Andries
,
C.
Lemoine
, and
P.
Besnier
, “
Absorbing material characterization in a reverberation chamber
,” in
10th International Symposium on Electromagnetic Compatibility
(
2011
), pp.
117
122
.
9.
X.
Chen
,
J.
Tang
,
T.
Li
,
S.
Zhu
,
Y.
Ren
,
Z.
Zhang
, and
A.
Zhang
, “
Reverberation chambers for over-the-air tests: An overview of two decades of research
,”
IEEE Access
6
,
49129
49143
(
2018
).
10.
J.
Carlsson
,
C. P.
Lotback
, and
A. A.
Glazunov
, “
Reverberation chamber for OTA measurements: The history of a dream!
,” in
11th European Conference Antennas Propagation
(
IEEE
,
2017
), pp.
237
241
.
11.
K.
Rosengren
,
P. S.
Kildal
,
J.
Carlsson
, and
O.
Lundén
, “
A new method to measure radiation efficiency of terminal antennas
,” in IEEE-APS Conference on Antennas and Propagation for Wireless Communications (
2000
), pp.
5
8
.
12.
K.
Rosengren
,
P.-S.
Kildal
,
C.
Carlsson
, and
J.
Carlsson
, “
Characterization of antennas for mobile and wireless terminals by using reverberation chambers: Improved accuracy by platform stirring
,” in
IEEE Antennas Propagation Society International Symposium. Digest Held in Conjunction with USN/URSCI National Radio Science Meeting (Cat. No.01CH37229)
(
IEEE
,
2001
), Vol.
3
, pp.
350
353
.
13.
M.
Piette
, “
Antenna radiation efficiency measurements in a reverberation chamber
,” in
Asia-Pacific Radio Science Conference Proceedings
(
IEEE
,
2004
), pp.
19
22
.
14.
P.
Hallbjörner
, “
Reflective antenna efficiency measurements in reverberation chambers
,”
Microwave Opt. Technol. Lett.
30
,
332
335
(
2001
).
15.
H. G.
Krauthauser
and
M.
Herbrig
, “
Yet another antenna efficiency measurement method in reverberation chambers
,” in
IEEE International Symposiun on Electromagnetic Compatability
(
IEEE
,
2010
) pp.
536
540
,
Vol.
3
.
16.
C. L.
Holloway
,
H. A.
Shah
,
R. J.
Pirkl
,
W. F.
Young
,
D. A.
Hill
, and
J.
Ladbury
, “
Reverberation chamber techniques for determining the radiation and total efficiency of antennas
,”
IEEE Trans. Antennas Propag.
60
,
1758
1770
(
2012
).
17.
P.
Besnier
,
J.
Sol
,
A.
Presse
,
C.
Lemoine
, and
A.-C.
Tarot
, “
Antenna efficiency measurement from quality factor estimation in reverberation chamber
,” in
46th Europe Microwave Conference
(
IEEE
,
2016
), pp.
715
718
.
18.
A.
Azremi
,
H. G.
Shiraz
, and
P. S.
Hall
, “
Reverberation chamber for efficiency measurement of small antennas
,” in
1st International Conference Computers, Communications, and Signal Processing with Special Tracking Biomedical Engineering
(
IEEE
,
2005
), pp.
25
29
.
19.
C.
Li
,
T.-H.
Loh
,
Z. H.
Tian
,
Q.
Xu
, and
Y.
Huang
, “
A comparison of antenna efficiency measurements performed in two reverberation chambers using non-reference antenna methods
,” in Loughbrgh. Antennas and Propagation Conference (
IEEE
,
2015
), pp.
1
5
.
20.
W.
Krouka
,
F.
Sarrazin
, and
E.
Richalot
, “
Influence of the reverberation chamber on antenna characterization performances
,” in
International Symposium on Electromagnetic Compatability
(EMC Europe) (
IEEE
,
2018
), pp.
329
333
.
21.
G.
Conway
,
W.
Scanlon
,
C.
Orlenius
, and
C.
Walker
, “
In situ measurement of UHF wearable antenna radiation efficiency using a reverberation chamber
,”
IEEE Antennas Wireless Propag. Lett.
7
,
271
274
(
2008
).
22.
O.
Lunden
and
M.
Backstrom
, “
Stirrer efficiency in FOA reverberation chambers. Evaluation of correlation coefficients and chi-squared tests
,” in
IEEE International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.00CH37016)
(
2000
), Vol.
1
, pp.
11
16
.
23.
K.
Madsen
and
H.
Orlenius
, “
Models for the number of independent samples in reverberation chamber measurements with mechanical, frequency, and combined stirring
,”
IEEE Antennas Wireless Propag. Lett.
3
,
48
51
(
2004
).
24.
H. G.
Krauthauser
,
T.
Winzerling
,
J.
Nitsch
,
N.
Eulig
, and
A.
Enders
, “
Statistical interpretation of autocorrelation coefficients for fields in mode-stirred chambers
,” in
International Symposium on Electromagnetic Compatibility (EMC 2005)
(
2005
), Vol.
2
, pp.
550
555
.
25.
C.
Lemoine
,
P.
Besnier
, and
M.
Drissi
, “
Advanced method for estimating number of independent samples available with stirrer in reverberation chamber
,”
Electron. Lett.
43
,
861
862
(
2007
).
26.
I. D.
Flintoft
,
S. J.
Bale
,
S. L.
Parker
,
A. C.
Marvin
,
J. F.
Dawson
, and
M. P.
Robinson
, “
On the measurable range of absorption cross section in a reverberation chamber
,”
IEEE Trans. Electromagn. Compat.
58
,
22
29
(
2016
).
27.
K. A.
Remley
,
C.-M. J.
Wang
,
D. F.
Williams
,
J. J.
aan den Toorn
, and
C. L.
Holloway
, “
A significance test for reverberation-chamber measurement uncertainty in total radiated power of wireless devices
,”
IEEE Trans. Electromagn. Compat.
58
,
207
219
(
2016
).
28.
G.
Gradoni
,
V.
Mariani Primiani
, and
F.
Moglie
, “
Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions
,”
Prog. Electromagn. Res.
133
,
217
234
(
2013
).
29.
K.
Oubaha
,
M.
Richter
,
U.
Kuhl
,
F.
Mortessagne
, and
O.
Legrand
, “
Refining the experimental extraction of the number of independent samples in a mode-stirred reverberation chamber
,” in
International Symposium on Electromagnetic Compatability (EMC Europe)
(
IEEE
,
2018
), pp.
719
724
.
30.
R.
Serra
,
A. C.
Marvin
,
F.
Moglie
,
V. M.
Primiani
,
A.
Cozza
,
L. R.
Arnaut
,
Y.
Huang
,
M. O.
Hatfield
,
M.
Klingler
, and
F.
Leferink
, “
Reverberation chambers a la carte: An overview of the different mode-stirring techniques
,”
IEEE Electromagnetic Compatibility Mag.
6
,
63
78
(
2017
).
31.
Electromagnetic compatibility (EMC)—Standard from IEC 61000‐4‐21, “Electromagnetic compatibility (EMC)—Part 4-21: Testing and measurement techniques – reverberation chamber test methods
,” (
2011
).
32.
N.
Kaina
,
M.
Dupré
,
M.
Fink
, and
G.
Lerosey
, “
Hybridized resonances to design tunable binary phase metasurface unit cells
,”
Opt. Express
22
,
18881
18888
(
2014
).
33.
N.
Kaina
,
M.
Dupré
,
G.
Lerosey
, and
M.
Fink
, “
Shaping complex microwave fields in reverberating media with binary tunable metasurfaces
,”
Sci. Rep.
4
,
6693
(
2015
).
34.
M.
Dupré
,
P.
del Hougne
,
M.
Fink
,
F.
Lemoult
, and
G.
Lerosey
, “
Wave-aries
,”
Phys. Rev. Lett.
115
,
017701
(
2015
).
35.
P.
del Hougne
,
M. F.
Imani
,
M.
Fink
,
D. R.
Smith
, and
G.
Lerosey
, “
Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping
,”
Phys. Rev. Lett.
121
,
063901
(
2018
).
36.
P.
del Hougne
,
M.
Fink
, and
G.
Lerosey
, “
Optimally diverse communication channels in disordered environments with tuned randomness
,”
Nat. Electron.
2
,
36
(
2019
).
37.
P.
del Hougne
,
B.
Rajaei
,
L.
Daudet
, and
G.
Lerosey
, “
Intensity-only measurement of partially uncontrollable transmission matrix: Demonstration with wave-field shaping in a microwave cavity
,”
Opt. Express
24
,
18631
18641
(
2016
).
38.
J.-B.
Gros
,
P.
del Hougne
, and
G.
Lerosey
, “
Tuning a regular cavity to wave chaos with metasurface-reconfigurable walls
,”
Phys. Rev. A
101
,
061801
(
2020
).
39.
M.
Klingler
, “
Dispositif et procédé de brassage électromagnétique dans une chambre réverbérante à brassage de modes
,”
Patent FR 2 887 337
(
2005
).
40.
L. F.
Wanderlinder
,
D.
Lemaire
,
I.
Coccato
, and
D.
Seetharamdoo
, “
Practical implementation of metamaterials in a reverberation chamber to reduce the LUF
,” in
IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing)
(
2017
), pp.
1
3
.
41.
J.-B.
Gros
,
O.
Legrand
,
F.
Mortessagne
,
E.
Richalot
, and
K.
Selemani
, “
Universal behaviour of a wave chaos based electromagnetic reverberation chamber
,”
Wave Motion
51
,
664
672
(
2014
).
42.
J.-B.
Gros
,
U.
Kuhl
,
O.
Legrand
,
F.
Mortessagne
,
O.
Picon
, and
E.
Richalot
, “
Statistics of the electromagnetic response of a chaotic reverberation chamber
,”
Adv. Electromagn.
4
,
38
(
2015
).
43.
J.-B.
Gros
,
U.
Kuhl
,
O.
Legrand
,
F.
Mortessagne
, and
E.
Richalot
, “
Universal intensity statistics in a chaotic reverberation chamber to refine the criterion of statistical field uniformity
,” in
IEEE Metrology for Aerospace (MetroAeroSpace)
(
2015
), pp.
225
229
.
44.
L. R.
Arnaut
, “
Operation of electromagnetic reverberation chambers with wave diffractors at relatively low frequencies
,”
IEEE Trans. Electromagn. Compat.
43
,
637
653
(
2001
).
45.
V.
Galdi
,
I.
Pinto
, and
L.
Felsen
, “
Wave propagation in ray-chaotic enclosures: Paradigms, oddities and examples
,”
IEEE Antennas Propag. Mag.
47
,
62
81
(
2005
).
46.
G.
Orjubin
,
E.
Richalot
,
O.
Picon
, and
O.
Legrand
, “
Wave chaos techniques to analyze a modeled reverberation chamber
,”
C. R. Phys.
10
,
42
53
(
2009
).
47.
G.
Gradoni
,
J.-H.
Yeh
,
B.
Xiao
,
T. M.
Antonsen
,
S. M.
Anlage
, and
E.
Ott
, “
Predicting the statistics of wave transport through chaotic cavities by the random coupling model: A review and recent progress
,”
Wave Motion
51
,
606
621
(
2014
).
48.
F.
Moglie
,
G.
Gradoni
,
L.
Bastianelli
, and
V. M.
Primiani
, “
A mechanical mode-stirred reverberation chamber inspired by chaotic cavities
,” in
IEEE International Workshop on Metrology for Aerospace
(
IEEE
,
2015
), pp.
437
441
.
49.
L.
Bastianelli
,
G.
Gradoni
,
F.
Moglie
, and
V. M.
Primiani
, “
Full wave analysis of chaotic reverberation chambers
,” in
XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)
(
IEEE
,
2017
), pp.
1
4
.
50.
U.
Kuhl
,
O.
Legrand
,
F.
Mortessagne
,
K.
Oubaha
, and
M.
Richter
, “
Statistics of reflection and transmission in the strong overlap regime of fully chaotic reverberation chambers
,” in EUMCWeek Nürnberg (
2017
), pp.
1
4
.
51.
C.
Lemoine
,
P.
Besnier
, and
M.
Drissi
, “
Proposition of tolerance requirements adapted for the calibration of a reverberation chamber
,” in
20th International Zurich Symposium on Electromagnetic Compatability
(
IEEE
,
2009
), pp.
41
44
.
52.
H.
Krauthäuser
,
Grundlagen und Anwendungen von Modenverwirbelungskammern
(
Otto-von-Guericke-Universität Magdeburg
,
Habilitationsschrift
,
2007
).
53.
G.
Gradoni
,
F.
Moglie
, and
V.
Mariani Primiani
, “
Correlation matrix methods to assess the stirring performance of electromagnetic reverberation chambers
,”
Wave Motion
87
,
213
226
(
2019
).
54.
J. A.
Hart
,
T. M.
Antonsen
, and
E.
Ott
, “
Effect of short ray trajectories on the scattering statistics of wave chaotic systems
,”
Phys. Rev. E
80
,
041109
(
2009
).
55.
J.-H.
Yeh
,
J.
Hart
,
E.
Bradshaw
,
T. M.
Antonsen
,
E.
Ott
, and
S. M.
Anlage
, “
Experimental examination of the effect of short ray trajectories in two-port wave-chaotic scattering systems
,”
Phys. Rev. E
82
,
041114
(
2010
).
56.
P.
Corona
,
G.
Ferrara
, and
M.
Migliaccio
, “
Reverberating chamber electromagnetic field in presence of an unstirred component
,”
IEEE Trans. Electromagn. Compat.
42
,
111
115
(
2000
).
57.
C.
Lemoine
,
E.
Amador
, and
P.
Besnier
, “
Mode-stirring efficiency of reverberation chambers based on Rician K-factor
,”
Electron. Lett.
47
,
1114
1115
(
2011
).
58.
O.
Lunden
and
M.
Backstrom
, “
How to avoid unstirred high frequency components in mode stirred reverberation chambers
,” in
IEEE International Symposium on Electromagnetic Compatability
(
IEEE
,
2007
), pp.
1
4
.
59.
Greenerwave, 6 rue Jean Calvin, 75005 Paris, France
.
60.
J.-B.
Gros
,
U.
Kuhl
,
O.
Legrand
, and
F.
Mortessagne
, “
Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field
,”
Phys. Rev. E
93
,
032108
(
2016
).
61.
B.
Dietz
and
A.
Richter
, “
Quantum and wave dynamical chaos in superconducting microwave billiards
,”
Chaos
25
,
097601
(
2015
).
62.
U.
Kuhl
,
O.
Legrand
, and
F.
Mortessagne
, “
Microwave experiments using open chaotic cavities in the realm of the effective Hamiltonian formalism
,”
Fortschr. Phys.
61
,
404
(
2013
).
63.
M. R.
Schroeder
and
K. H.
Kuttruff
, “
On frequency response curves in rooms. Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima
,”
J. Acoust. Soc.
34
,
76
(
1962
).
64.
T.
Ericson
, “
A theory of fluctuations in nuclear cross sections
,”
Ann. Phys.
23
,
390
414
(
1963
).
65.
W.
Krouka
,
F.
Sarrazin
, and
E.
Richalot
, “
Influence of the reverberation chamber on antenna characterization performances
,” in
International Symposium on Electromagnetic Compatibility (EMC EUROPE)
(
2018
), Vol.
60
, p.
329
.
66.
Electromagnetic compatibility (EMC)—Standard from IEC 61000‐4‐21, “Electromagnetic compatibility (EMC)—Part 4-21: Testing and measurement techniques – reverberation chamber test methods
,” (
2003
).
67.
B.
Köber
,
U.
Kuhl
,
H.-J.
Stöckmann
,
T.
Gorin
,
D. V.
Savin
, and
T. H.
Seligman
, “
Microwave fidelity studies by varying antenna coupling
,”
Phys. Rev. E
82
,
036207
(
2010
).
68.
Y. V.
Fyodorov
,
D. V.
Savin
, and
H.-J.
Sommers
, “
Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption
,”
J. Phys. A
38
,
10731
10760
(
2005
).
69.
J.-B.
Gros
,
U.
Kuhl
,
O.
Legrand
,
F.
Mortessagne
,
P.
Besnier
, and
E.
Richalot
, “
Tolerance requirements revisited for the calibration of chaotic reverberation chambers
,” in
18ème colloque et expositions internationale sur la compatibilité électromagnétique (CEM 2016)
, Rennes, France (
2016
).
70.
Note that for |ρ|1 the system tends to be closed, a situation corresponding to non-overlapping resonances, whereas |ρ|0 corresponds to the asymptotic limit of Hill's assumptions.
71.
R.
Pnini
and
B.
Shapiro
, “
Intensity fluctuations in closed and open systems
,”
Phys. Rev. E
54
,
R1032
R1035
(
1996
).
72.
Y.-H.
Kim
,
U.
Kuhl
,
H.-J.
Stöckmann
, and
P. W.
Brouwer
, “
Measurement of long-range wave-function correlations in an open microwave billiard
,”
Phys. Rev. Lett.
94
,
036804
(
2005
).
73.
C. L.
Holloway
,
D. A.
Hill
,
J. M.
Ladbury
,
P. F.
Wilson
,
G.
Koepke
, and
J.
Coder
, “
On the use of reverberation chambers to simulate a Rician radio environment for the testing of wireless devices
,”
IEEE Trans. Antennas Propag.
54
,
3167
(
2006
).
74.
A.
Reis
,
F.
Sarrazin
,
E.
Richalot
, and
P.
Pouliguen
, “
Mode-stirring impact in radar cross section evaluation in reverberation chamber
,” in
International Symposium on Electromagnetic Compatability—(EMC Europe)
(
IEEE
,
2018
), pp.
875
878
.
75.
G.
Lerosey
and
J.
de Rosny
, “
Scattering cross section measurement in reverberation chamber
,”
IEEE Trans. Electromagn. Compat.
49
,
280
284
(
2007
).
76.
I. E.
Baba
,
S.
Lallechere
,
P.
Bonnet
,
J.
Benoit
, and
F.
Paladian
, “
Computing total scattering cross section from 3D reverberation chambers time modeling
,” in
Asia-Pacific International Symposium on Electromagnetic Compatability
(
IEEE
,
2012
), pp.
585
588
.
77.
G.
Gradoni
,
D.
Micheli
,
F.
Moglie
, and
V.
Mariani Primiani
, “
Absorbing cross section in reverberation chamber: Experimental and numerical results
,”
Prog. Electromagn. Res. B
45
,
187
202
(
2012
).
78.
P. S.
Kildal
and
K.
Rosengren
, “
Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: Simulations and measurements in a reverberation chamber
,”
IEEE Commun. Mag.
42
,
104
112
(
2004
).
79.
M.
Davy
,
J.
de Rosny
, and
P.
Besnier
, “
Green's function retrieval with absorbing probes in reverberating cavities
,”
Phys. Rev. Lett.
116
,
213902
(
2016
).
80.
K.
Rosengren
and
P.-S.
Kildal
, “
Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber
,”
IEE Proc.
152
,
7
(
2005
).
81.
G.
Gradoni
,
T. M.
Antonsen
,
S. M.
Anlage
, and
E.
Ott
, “
Random Coupling Model for interconnected wireless environments
,” in
IEEE International Symposium on Electromagnetic Compatability
(
IEEE
,
2014
), pp.
792
797
.
82.
P.
Besnier
,
C.
Lemoine
,
J.
Sol
, and
J.-M.
Floc'h
, “
Radiation pattern measurements in reverberation chamber based on estimation of coherent and diffuse electromagnetic fields
,” in
IEEE Conference on Antenna Measurements & Applications (CAMA)
(
IEEE
,
2014
), Vol.
6164
, pp.
1
4
.
83.
V.
Fiumara
,
A.
Fusco
,
V.
Matta
, and
I.
Pinto
, “
Free-space antenna field/pattern retrieval in reverberation environments
,”
Antennas Wireless Propag. Lett.
4
,
329
332
(
2005
).
84.
D. V.
Savin
,
M.
Richter
,
U.
Kuhl
,
O.
Legrand
, and
F.
Mortessagne
, “
Fluctuations in an established transmission in the presence of a complex environment
,”
Phys. Rev. E
96
,
032221
(
2017
).
85.
J. D.
Sanchez-Heredia
,
J. F.
Valenzuela-Valdes
,
A. M.
Martinez-Gonzalez
, and
D. A.
Sanchez-Hernandez
, “
Emulation of MIMO Rician-Fading environments with mode-stirred reverberation chambers
,”
IEEE Trans. Antennas Propag.
59
,
654
660
(
2011
).
You do not currently have access to this content.