Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e., unentangled) atomic states. This perspective piece asks the question: can entanglement usefully improve cold-atom sensors, in the sense that it gives new sensing capabilities unachievable with current state-of-the-art devices? We briefly review the state-of-the-art in precision cold-atom sensing, focusing on clocks and inertial sensors, identifying the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits. We survey demonstrated methods of generating metrologically useful entanglement in cold-atom systems, note their relative strengths and weaknesses, and assess their prospects for near-to-medium term quantum-enhanced cold-atom sensing.

1.
T. L.
Nicholson
,
S. L.
Campbell
,
R. B.
Hutson
,
G. E.
Marti
,
B. J.
Bloom
,
R. L.
McNally
,
W.
Zhang
,
M. D.
Barrett
,
M. S.
Safronova
,
G. F.
Strouse
,
W. L.
Tew
, and
J.
Ye
, “
Systematic evaluation of an atomic clock at 2 × 10 18 total uncertainty
,”
Nat. Commun.
6
,
6896
(
2015
).
2.
B.
Canuel
,
F.
Leduc
,
D.
Holleville
,
A.
Gauguet
,
J.
Fils
,
A.
Virdis
,
A.
Clairon
,
N.
Dimarcq
,
C. J.
Bordé
,
A.
Landragin
, and
P.
Bouyer
, “
Six-axis inertial sensor using cold-atom interferometry
,”
Phys. Rev. Lett.
97
,
010402
(
2006
).
3.
T. L.
Gustavson
,
P.
Bouyer
, and
M. A.
Kasevich
, “
Precision rotation measurements with an atom interferometer gyroscope
,”
Phys. Rev. Lett.
78
,
2046
2049
(
1997
).
4.
A.
Peters
,
K. Y.
Chung
, and
S.
Chu
, “
High-precision gravity measurements using atom interferometry
,”
Metrologia
38
,
25
(
2001
).
5.
M. J.
Snadden
,
J. M.
McGuirk
,
P.
Bouyer
,
K. G.
Haritos
, and
M. A.
Kasevich
, “
Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer
,”
Phys. Rev. Lett.
81
,
971
974
(
1998
).
6.
M.
Vengalattore
,
J. M.
Higbie
,
S. R.
Leslie
,
J.
Guzman
,
L. E.
Sadler
, and
D. M.
Stamper-Kurn
, “
High-resolution magnetometry with a spinor Bose-Einstein condensate
,”
Phys. Rev. Lett.
98
,
200801
(
2007
).
7.
R. H.
Parker
,
C.
Yu
,
W.
Zhong
,
B.
Estey
, and
H.
Müller
, “
Measurement of the fine-structure constant as a test of the standard model
,”
Science
360
,
191
195
(
2018
).
8.
G.
Rosi
,
F.
Sorrentino
,
L.
Cacciapuoti
,
M.
Prevedelli
, and
G. M.
Tino
, “
Precision measurement of the Newtonian gravitational constant using cold atoms
,”
Nature
510
,
518
521
(
2014
).
9.
C.
Jekeli
, “
Navigation error analysis of atom interferometer inertial sensor
,”
Navigation
52
,
1
14
(
2005
).
10.
B.
Battelier
,
B.
Barrett
,
L.
Fouché
,
L.
Chichet
,
L.
Antoni-Micollier
,
H.
Porte
,
F.
Napolitano
,
J.
Lautier
,
A.
Landragin
, and
P.
Bouyer
, “
Development of compact cold-atom sensors for inertial navigation
,” in
Quantum Optics
, edited by
J.
Stuhler
and
A. J.
Shields
(
International Society for Optics and Photonics (SPIE)
,
2016
), Vol.
9900
, pp.
21
37
.
11.
P.
Cheiney
,
L.
Fouché
,
S.
Templier
,
F.
Napolitano
,
B.
Battelier
,
P.
Bouyer
, and
B.
Barrett
, “
Navigation-compatible hybrid quantum accelerometer using a Kalman filter
,”
Phys. Rev. Appl.
10
,
034030
(
2018
).
12.
E. H.
van Leeuwen
, “
BHP develops airborne gravity gradiometer for mineral exploration
,”
Leading Edge
19
,
1296
1297
(
2000
).
13.
M. I.
Evstifeev
, “
The state of the art in the development of onboard gravity gradiometers
,”
Gyroscopy Navigation
8
,
68
79
(
2017
).
14.
B.
Canuel
,
A.
Bertoldi
,
L.
Amand
,
E.
Pozzo di Borgo
,
T.
Chantrait
,
C.
Danquigny
,
M.
Dovale Álvarez
,
B.
Fang
,
A.
Freise
,
R.
Geiger
,
J.
Gillot
,
S.
Henry
,
J.
Hinderer
,
D.
Holleville
,
J.
Junca
,
G.
Lefèvre
,
M.
Merzougui
,
N.
Mielec
,
T.
Monfret
,
S.
Pelisson
,
M.
Prevedelli
,
S.
Reynaud
,
I.
Riou
,
Y.
Rogister
,
S.
Rosat
,
E.
Cormier
,
A.
Landragin
,
W.
Chaibi
,
S.
Gaffet
, and
P.
Bouyer
, “
Exploring gravity with the MIGA large scale atom interferometer
,”
Sci. Rep.
8
,
14064
(
2018
).
15.
G.
Tino
,
F.
Sorrentino
,
D.
Aguilera
,
B.
Battelier
,
A.
Bertoldi
,
Q.
Bodart
,
K.
Bongs
,
P.
Bouyer
,
C.
Braxmaier
,
L.
Cacciapuoti
,
N.
Gaaloul
,
N.
Gürlebeck
,
M.
Hauth
,
S.
Herrmann
,
M.
Krutzik
,
A.
Kubelka
,
A.
Landragin
,
A.
Milke
,
A.
Peters
,
E.
Rasel
,
E.
Rocco
,
C.
Schubert
,
T.
Schuldt
,
K.
Sengstock
, and
A.
Wicht
, “
Precision gravity tests with atom interferometry in space
,”
Nucl. Phys. B
243–244
,
203
217
(
2013
).
16.
O.
Carraz
,
C.
Siemes
,
L.
Massotti
,
R.
Haagmans
, and
P.
Silvestrin
, “
A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth's gravity field
,”
Microgravity Sci. Technol.
26
,
139
145
(
2014
).
17.
S-w
Chiow
,
J.
Williams
, and
N.
Yu
, “
Laser-ranging long-baseline differential atom interferometers for space
,”
Phys. Rev. A
92
,
063613
(
2015
).
18.
K.
Douch
,
H.
Wu
,
C.
Schubert
,
J.
Müller
, and
F. P.
dos Santos
, “
Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery
,”
Adv. Space Res.
61
,
1307
1323
(
2018
).
19.
P.
Abrykosov
,
R.
Pail
,
T.
Gruber
,
N.
Zahzam
,
A.
Bresson
,
E.
Hardy
,
B.
Christophe
,
Y.
Bidel
,
O.
Carraz
, and
C.
Siemes
, “
Impact of a novel hybrid accelerometer on satellite gravimetry performance
,”
Adv. Space Res.
63
,
3235
(
2019
).
20.
F.
Migliaccio
,
M.
Reguzzoni
,
K.
Batsukh
,
G. M.
Tino
,
G.
Rosi
,
F.
Sorrentino
,
C.
Braitenberg
,
T.
Pivetta
,
D. F.
Barbolla
, and
S.
Zoffoli
, “
MOCASS: A satellite mission concept using cold atom interferometry for measuring the Earth gravity field
,”
Surv. Geophys.
40
,
1029
1053
(
2019
).
21.
A.
Trimeche
,
B.
Battelier
,
D.
Becker
,
A.
Bertoldi
,
P.
Bouyer
,
C.
Braxmaier
,
E.
Charron
,
R.
Corgier
,
M.
Cornelius
,
K.
Douch
,
N.
Gaaloul
,
S.
Herrmann
,
J.
Müller
,
E.
Rasel
,
C.
Schubert
,
H.
Wu
, and
F. P.
dos Santos
, “
Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry
,”
Classical Quantum Gravity
36
,
215004
(
2019
).
22.
S.
Dimopoulos
,
P. W.
Graham
,
J. M.
Hogan
, and
M. A.
Kasevich
, “
Testing general relativity with atom interferometry
,”
Phys. Rev. Lett.
98
,
111102
(
2007
).
23.
D. N.
Aguilera
,
H.
Ahlers
,
B.
Battelier
,
A.
Bawamia
,
A.
Bertoldi
,
R.
Bondarescu
,
K.
Bongs
,
P.
Bouyer
,
C.
Braxmaier
,
L.
Cacciapuoti
,
C.
Chaloner
,
M.
Chwalla
,
W.
Ertmer
,
M.
Franz
,
N.
Gaaloul
,
M.
Gehler
,
D.
Gerardi
,
L.
Gesa
,
N.
Gürlebeck
,
J.
Hartwig
,
M.
Hauth
,
O.
Hellmig
,
W.
Herr
,
S.
Herrmann
,
A.
Heske
,
A.
Hinton
,
P.
Ireland
,
P.
Jetzer
,
U.
Johann
,
M.
Krutzik
,
A.
Kubelka
,
C.
Lämmerzahl
,
A.
Landragin
,
I.
Lloro
,
D.
Massonnet
,
I.
Mateos
,
A.
Milke
,
M.
Nofrarias
,
M.
Oswald
,
A.
Peters
,
K.
Posso-Trujillo
,
E.
Rasel
,
E.
Rocco
,
A.
Roura
,
J.
Rudolph
,
W.
Schleich
,
C.
Schubert
,
T.
Schuldt
,
S.
Seidel
,
K.
Sengstock
,
C. F.
Sopuerta
,
F.
Sorrentino
,
D.
Summers
,
G. M.
Tino
,
C.
Trenkel
,
N.
Uzunoglu
,
W.
von Klitzing
,
R.
Walser
,
T.
Wendrich
,
A.
Wenzlawski
,
P.
Weßels
,
A.
Wicht
,
E.
Wille
,
M.
Williams
,
P.
Windpassinger
, and
N.
Zahzam
, “
STE-QUEST-test of the universality of free fall using cold atom interferometry
,”
Classical Quantum Gravity
31
,
115010
(
2014
).
24.
J.
Williams
,
S.
wey Chiow
,
N.
Yu
, and
H.
Müller
, “
Quantum test of the equivalence principle and space-time aboard the international space station
,”
New J. Phys.
18
,
025018
(
2016
).
25.
D.
Becker
,
M. D.
Lachmann
,
S. T.
Seidel
,
H.
Ahlers
,
A. N.
Dinkelaker
,
J.
Grosse
,
O.
Hellmig
,
H.
Müntinga
,
V.
Schkolnik
,
T.
Wendrich
,
A.
Wenzlawski
,
B.
Weps
,
R.
Corgier
,
T.
Franz
,
N.
Gaaloul
,
W.
Herr
,
D.
Lüdtke
,
M.
Popp
,
S.
Amri
,
H.
Duncker
,
M.
Erbe
,
A.
Kohfeldt
,
A.
Kubelka-Lange
,
C.
Braxmaier
,
E.
Charron
,
W.
Ertmer
,
M.
Krutzik
,
C.
Lämmerzahl
,
A.
Peters
,
W. P.
Schleich
,
K.
Sengstock
,
R.
Walser
,
A.
Wicht
,
P.
Windpassinger
, and
E. M.
Rasel
, “
Space-borne Bose–Einstein condensation for precision interferometry
,”
Nature
562
,
391
395
(
2018
).
26.
G. M.
Tino
, “
Testing gravity with cold atom interferometry: Results and prospects
,”
Quant. Sci. Technol.
6
,
024014
(
2021
).
27.
T.
Farah
,
C.
Guerlin
,
A.
Landragin
,
P.
Bouyer
,
S.
Gaffet
,
F.
Pereira Dos Santos
, and
S.
Merlet
, “
Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter
,”
Gyroscopy Navigation
5
,
266
274
(
2014
).
28.
C.
Freier
,
M.
Hauth
,
V.
Schkolnik
,
B.
Leykauf
,
M.
Schilling
,
H.
Wziontek
,
H.-G.
Scherneck
,
J.
Müller
, and
A.
Peters
, “
Mobile quantum gravity sensor with unprecedented stability
,”
J. Phys.: Conf. Ser.
723
,
012050
(
2016
).
29.
Y.
Bidel
,
N.
Zahzam
,
C.
Blanchard
,
A.
Bonnin
,
M.
Cadoret
,
A.
Bresson
,
D.
Rouxel
, and
M. F.
Lequentrec-Lalancette
, “
Absolute marine gravimetry with matter-wave interferometry
,”
Nat. Commun.
9
,
627
(
2018
).
30.
J.
Grotti
,
S.
Koller
,
S.
Vogt
,
S.
Häfner
,
U.
Sterr
,
C.
Lisdat
,
H.
Denker
,
C.
Voigt
,
L.
Timmen
,
A.
Rolland
,
F. N.
Baynes
,
H. S.
Margolis
,
M.
Zampaolo
,
P.
Thoumany
,
M.
Pizzocaro
,
B.
Rauf
,
F.
Bregolin
,
A.
Tampellini
,
P.
Barbieri
,
M.
Zucco
,
G. A.
Costanzo
,
C.
Clivati
,
F.
Levi
, and
D.
Calonico
, “
Geodesy and metrology with a transportable optical clock
,”
Nat. Phys.
14
,
437
441
(
2018
).
31.
K.
Bongs
,
M.
Holynski
,
J.
Vovrosh
,
P.
Bouyer
,
G.
Condon
,
E.
Rasel
,
C.
Schubert
,
W. P.
Schleich
, and
A.
Roura
, “
Taking atom interferometric quantum sensors from the laboratory to real-world applications
,”
Nat. Rev. Phys.
1
,
731
739
(
2019
).
32.
R.
Geiger
,
A.
Landragin
,
S.
Merlet
, and
F.
Pereira Dos Santos
, “
High-accuracy inertial measurements with cold-atom sensors
,”
AVS Quantum Sci.
2
,
024702
(
2020
).
33.
Z.-K.
Hu
,
B.-L.
Sun
,
X.-C.
Duan
,
M.-K.
Zhou
,
L.-L.
Chen
,
S.
Zhan
,
Q.-Z.
Zhang
, and
J.
Luo
, “
Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter
,”
Phys. Rev. A
88
,
043610
(
2013
).
34.
P.
Gillot
,
O.
Francis
,
A.
Landragin
,
F.
Pereira Dos Santos
, and
S.
Merlet
, “
Stability comparison of two absolute gravimeters: Optical versus atomic interferometers
,”
Metrologia
51
,
L15
L17
(
2014
).
35.
V.
Ménoret
,
P.
Vermeulen
,
N. L.
Moigne
,
S.
Bonvalot
,
P.
Bouyer
,
A.
Landragin
, and
B.
Desruelle
, “
Gravity measurements below 10 9 g with a transportable absolute quantum gravimeter
,”
Sci. Rep.
8
,
12300
(
2018
).
36.
R.
Karcher
,
A.
Imanaliev
,
S.
Merlet
, and
F. P. D.
Santos
, “
Improving the accuracy of atom interferometers with ultracold sources
,”
New J. Phys.
20
,
113041
(
2018
).
37.
J.
Lautier
,
L.
Volodimer
,
T.
Hardin
,
S.
Merlet
,
M.
Lours
,
F.
Pereira Dos Santos
, and
A.
Landragin
, “
Hybridizing matter-wave and classical accelerometers
,”
Appl. Phys. Lett.
105
,
144102
(
2014
).
38.
A. V.
Rakholia
,
H. J.
McGuinness
, and
G. W.
Biedermann
, “
Dual-axis high-data-rate atom interferometer via cold ensemble exchange
,”
Phys. Rev. Appl.
2
,
054012
(
2014
).
39.
T.
van Zoest
,
N.
Gaaloul
,
Y.
Singh
,
H.
Ahlers
,
W.
Herr
,
S. T.
Seidel
,
W.
Ertmer
,
E.
Rasel
,
M.
Eckart
,
E.
Kajari
,
S.
Arnold
,
G.
Nandi
,
W. P.
Schleich
,
R.
Walser
,
A.
Vogel
,
K.
Sengstock
,
K.
Bongs
,
W.
Lewoczko-Adamczyk
,
M.
Schiemangk
,
T.
Schuldt
,
A.
Peters
,
T.
Könemann
,
H.
Müntinga
,
C.
Lämmerzahl
,
H.
Dittus
,
T.
Steinmetz
,
T. W.
Hänsch
, and
J.
Reichel
, “
Bose-Einstein condensation in microgravity
,”
Science
328
,
1540
(
2010
).
40.
A.
Hinton
,
M.
Perea-Ortiz
,
J.
Winch
,
J.
Briggs
,
S.
Freer
,
D.
Moustoukas
,
S.
Powell-Gill
,
C.
Squire
,
A.
Lamb
,
C.
Rammeloo
,
B.
Stray
,
G.
Voulazeris
,
L.
Zhu
,
A.
Kaushik
,
Y. H.
Lien
,
A.
Niggebaum
,
A.
Rodgers
,
A.
Stabrawa
,
D.
Boddice
,
S. R.
Plant
,
G. W.
Tuckwell
,
K.
Bongs
,
N.
Metje
, and
M.
Holynski
, “
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
,”
Philos. Trans. R. Soc. A
375
,
20160238
(
2017
).
41.
P. B.
Wigley
,
K. S.
Hardman
,
C.
Freier
,
P. J.
Everitt
,
S.
Legge
,
P.
Manju
,
J. D.
Close
, and
N. P.
Robins
, “
Readout-delay-free Bragg atom interferometry using overlapped spatial fringes
,”
Phys. Rev. A
99
,
023615
(
2019
).
42.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
, “
Quantum metrology
,”
Phys. Rev. Lett.
96
,
010401
(
2006
).
43.
M.
Kitagawa
and
M.
Ueda
, “
Squeezed spin states
,”
Phys. Rev. A
47
,
5138
5143
(
1993
).
44.
J.
Estève
,
C.
Gross
,
A.
Weller
,
S.
Giovanazzi
, and
M. K.
Oberthaler
, “
Squeezing and entanglement in a Bose–Einstein condensate
,”
Nature
455
,
1216
1219
(
2008
).
45.
J.
Appel
,
P. J.
Windpassinger
,
D.
Oblak
,
U. B.
Hoff
,
N.
Kjærgaard
, and
E. S.
Polzik
, “
Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit
,”
Proc. Natl. Acad. Sci.
106
,
10960
10965
(
2009
).
46.
M. F.
Riedel
,
P.
Böhi
,
Y.
Li
,
T. W.
Hänsch
,
A.
Sinatra
, and
P.
Treutlein
, “
Atom-chip-based generation of entanglement for quantum metrology
,”
Nature
464
,
1170
1173
(
2010
).
47.
C.
Gross
,
T.
Zibold
,
E.
Nicklas
,
J.
Estève
, and
M. K.
Oberthaler
, “
Nonlinear atom interferometer surpasses classical precision limit
,”
Nature
464
,
1165
1169
(
2010
).
48.
M. H.
Schleier-Smith
,
I. D.
Leroux
, and
V.
Vuletić
, “
States of an ensemble of two-level atoms with reduced quantum uncertainty
,”
Phys. Rev. Lett.
104
,
073604
(
2010
).
49.
I. D.
Leroux
,
M. H.
Schleier-Smith
, and
V.
Vuletić
, “
Orientation-dependent entanglement lifetime in a squeezed atomic clock
,”
Phys. Rev. Lett.
104
,
250801
(
2010
).
50.
B.
Lucke
,
M.
Scherer
,
J.
Kruse
,
L.
Pezze
,
F.
Deuretzbacher
,
P.
Hyllus
,
O.
Topic
,
J.
Peise
,
W.
Ertmer
,
J.
Arlt
,
L.
Santos
,
A.
Smerzi
, and
C.
Klempt
, “
Twin matter waves for interferometry beyond the classical limit
,”
Science
334
,
773
776
(
2011
).
51.
L.
Pezze
,
A.
Smerzi
,
M. K.
Oberthaler
,
R.
Schmied
, and
P.
Treutlein
, “
Quantum metrology with nonclassical states of atomic ensembles
,”
Rev. Mod. Phys.
90
,
035005
(
2018
).
52.
O.
Hosten
,
N. J.
Engelsen
,
R.
Krishnakumar
, and
M. A.
Kasevich
, “
Measurement noise 100 times lower than the quantum-projection limit using entangled atoms
,”
Nature
529
,
505
508
(
2016
).
53.
Although quantum
-
enhanced atomic magnetometers have demonstrated sensitivities at particular spatial resolutions close to state
-
of
-
the
-
art
,
they have not yet provided a new sensing capability unachievable by magnetometers that do not exploit quantum entanglement
.
54.
F. e.
Acernese
(
Virgo Collaboration
), “
Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light
,”
Phys. Rev. Lett.
123
,
231108
(
2019
).
55.
M. e.
Tse
, “
Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy
,”
Phys. Rev. Lett.
123
,
231107
(
2019
).
56.
B.
Yurke
,
S. L.
McCall
, and
J. R.
Klauder
, “
SU(2) and SU(1,1) interferometers
,”
Phys. Rev. A
33
,
4033
4054
(
1986
).
57.
D. J.
Wineland
,
J. J.
Bollinger
,
W. M.
Itano
, and
D. J.
Heinzen
, “
Squeezed atomic states and projection noise in spectroscopy
,”
Phys. Rev. A
50
,
67
88
(
1994
).
58.
A. S.
Sørensen
and
K.
Mølmer
, “
Entanglement and extreme spin squeezing
,”
Phys. Rev. Lett.
86
,
4431
4434
(
2001
).
59.
L.
Pezzé
and
A.
Smerzi
, “
Entanglement, nonlinear dynamics, and the Heisenberg limit
,”
Phys. Rev. Lett.
102
,
100401
(
2009
).
60.
G.
Tóth
, “
Multipartite entanglement and high-precision metrology
,”
Phys. Rev. A
85
,
022322
(
2012
).
61.
P.
Hyllus
,
W.
Laskowski
,
R.
Krischek
,
C.
Schwemmer
,
W.
Wieczorek
,
H.
Weinfurter
,
L.
Pezzé
, and
A.
Smerzi
, “
Fisher information and multiparticle entanglement
,”
Phys. Rev. A
85
,
022321
(
2012
).
62.
S. L.
Braunstein
and
C. M.
Caves
, “
Statistical distance and the geometry of quantum states
,”
Phys. Rev. Lett.
72
,
3439
3443
(
1994
).
63.
P.
Hyllus
,
O.
Gühne
, and
A.
Smerzi
, “
Not all pure entangled states are useful for sub-shot-noise interferometry
,”
Phys. Rev. A
82
,
012337
(
2010
).
64.
G.
Tóth
and
I.
Apellaniz
, “
Quantum metrology from a quantum information science perspective
,”
J. Phys. A
47
,
424006
(
2014
).
65.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
, “
Quantum-enhanced measurements: Beating the standard quantum limit
,”
Science
306
,
1330
1336
(
2004
).
66.
R.
Demkowicz-Dobrzański
,
J.
Kołodyński
, and
M.
Guţă
, “
The elusive Heisenberg limit in quantum-enhanced metrology
,”
Nat. Commun.
3
,
1063
(
2012
).
67.
J. P.
Dowling
,
G. S.
Agarwal
, and
W. P.
Schleich
, “
Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms
,”
Phys. Rev. A
49
,
4101
4109
(
1994
).
68.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
, “
Optical atomic clocks
,”
Rev. Mod. Phys.
87
,
637
701
(
2015
).
69.
E.
Oelker
,
R. B.
Hutson
,
C. J.
Kennedy
,
L.
Sonderhouse
,
T.
Bothwell
,
A.
Goban
,
D.
Kedar
,
C.
Sanner
,
J. M.
Robinson
,
G. E.
Marti
,
D. G.
Matei
,
T.
Legero
,
M.
Giunta
,
R.
Holzwarth
,
F.
Riehle
,
U.
Sterr
, and
J.
Ye
, “
Demonstration of 4.8 × 10 17 stability at 1 s for two independent optical clocks
,”
Nat. Photonics
13
,
714
719
(
2019
).
70.
M.
Schioppo
,
R. C.
Brown
,
W. F.
McGrew
,
N.
Hinkley
,
R. J.
Fasano
,
K.
Beloy
,
T. H.
Yoon
,
G.
Milani
,
D.
Nicolodi
,
J. A.
Sherman
,
N. B.
Phillips
,
C. W.
Oates
, and
A. D.
Ludlow
, “
Ultrastable optical clock with two cold-atom ensembles
,”
Nat. Photonics
11
,
48
52
(
2017
).
71.
B. J.
Bloom
,
T. L.
Nicholson
,
J. R.
Williams
,
S. L.
Campbell
,
M.
Bishof
,
X.
Zhang
,
W.
Zhang
,
S. L.
Bromley
, and
J.
Ye
, “
An optical lattice clock with accuracy and stability at the 10 18 level
,”
Nature
506
,
71
75
(
2014
).
72.
J.
Guéna
,
M.
Abgrall
,
A.
Clairon
, and
S.
Bize
, “
Contributing to TAI with a secondary representation of the SI second
,”
Metrologia
51
,
108
120
(
2014
).
73.
R.
Szmuk
,
V.
Dugrain
,
W.
Maineult
,
J.
Reichel
, and
P.
Rosenbusch
, “
Stability of a trapped-atom clock on a chip
,”
Phys. Rev. A
92
,
012106
(
2015
).
74.
C.
Deutsch
,
F.
Ramirez-Martinez
,
C.
Lacroûte
,
F.
Reinhard
,
T.
Schneider
,
J. N.
Fuchs
,
F.
Piéchon
,
F.
Laloë
,
J.
Reichel
, and
P.
Rosenbusch
, “
Spin self-rephasing and very long coherence times in a trapped atomic ensemble
,”
Phys. Rev. Lett.
105
,
020401
(
2010
).
75.
S. M.
Brewer
,
J.-S.
Chen
,
A. M.
Hankin
,
E. R.
Clements
,
C. W.
Chou
,
D. J.
Wineland
,
D. B.
Hume
, and
D. R.
Leibrandt
, “
27 Al + quantum-logic clock with a systematic uncertainty below 10 18
,”
Phys. Rev. Lett.
123
,
033201
(
2019
).
76.
R.
Bondarescu
,
M.
Bondarescu
,
G.
Hetényi
,
L.
Boschi
,
P.
Jetzer
, and
J.
Balakrishna
, “
Geophysical applicability of atomic clocks: Direct continental geoid mapping
,”
Geophys. J. Int.
191
,
78
82
(
2012
).
77.
M.
Takamoto
,
I.
Ushijima
,
N.
Ohmae
,
T.
Yahagi
,
K.
Kokado
,
H.
Shinkai
, and
H.
Katori
, “
Test of general relativity by a pair of transportable optical lattice clocks
,”
Nat. Photonics
14
,
411
415
(
2020
).
78.
B. K.
Malia
,
J.
Martínez-Rincón
,
Y.
Wu
,
O.
Hosten
, and
M. A.
Kasevich
, “
Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit
,”
Phys. Rev. Lett.
125
,
043202
(
2020
).
79.
M.-Z.
Huang
,
J. A.
de la Paz
,
T.
Mazzoni
,
K.
Ott
,
A.
Sinatra
,
C. L. G.
Alzar
, and
J.
Reichel
, “
Self-amplifying spin measurement in a long-lived spin-squeezed state
,” arXiv:2007.01964 (
2020
).
80.
E.
Pedrozo-Peñafiel
,
S.
Colombo
,
C.
Shu
,
A. F.
Adiyatullin
,
Z.
Li
,
E.
Mendez
,
B.
Braverman
,
A.
Kawasaki
,
D.
Akamatsu
,
Y.
Xiao
, and
V.
Vuletić
, “
Entanglement on an optical atomic-clock transition
,”
Nature
588
,
414
418
(
2020
).
81.
A.
André
,
A. S.
Sørensen
, and
M. D.
Lukin
, “
Stability of atomic clocks based on entangled atoms
,”
Phys. Rev. Lett.
92
,
230801
(
2004
).
82.
I. D.
Leroux
,
N.
Scharnhorst
,
S.
Hannig
,
J.
Kramer
,
L.
Pelzer
,
M.
Stepanova
, and
P. O.
Schmidt
, “
On-line estimation of local oscillator noise and optimisation of servo parameters in atomic clocks
,”
Metrologia
54
,
307
321
(
2017
).
83.
B.
Braverman
,
A.
Kawasaki
, and
V.
Vuletić
, “
Impact of non-unitary spin squeezing on atomic clock performance
,”
New J. Phys.
20
,
103019
(
2018
).
84.
M.
Schulte
,
C.
Lisdat
,
P. O.
Schmidt
,
U.
Sterr
, and
K.
Hammerer
, “
Prospects and challenges for squeezing-enhanced optical atomic clocks
,”
Nat. Commun.
11
,
5955
(
2020
).
85.
J.
Borregaard
and
A. S.
Sørensen
, “
Near-Heisenberg-limited atomic clocks in the presence of decoherence
,”
Phys. Rev. Lett.
111
,
090801
(
2013
).
86.
T.
Vanderbruggen
,
R.
Kohlhaas
,
A.
Bertoldi
,
S.
Bernon
,
A.
Aspect
,
A.
Landragin
, and
P.
Bouyer
, “
Feedback control of trapped coherent atomic ensembles
,”
Phys. Rev. Lett.
110
,
210503
(
2013
).
87.
K. C.
Cox
,
G. P.
Greve
,
J. M.
Weiner
, and
J. K.
Thompson
, “
Deterministic squeezed states with collective measurements and feedback
,”
Phys. Rev. Lett.
116
,
093602
(
2016
).
88.
J.
Borregaard
and
A. S.
Sørensen
, “
Efficient atomic clocks operated with several atomic ensembles
,”
Phys. Rev. Lett.
111
,
090802
(
2013
).
89.
T.
Rosenband
and
D. R.
Leibrandt
, “
Exponential scaling of clock stability with atom number
,” arXiv:1303.6357 (
2013
).
90.
D. B.
Hume
and
D. R.
Leibrandt
, “
Probing beyond the laser coherence time in optical clock comparisons
,”
Phys. Rev. A
93
,
032138
(
2016
).
91.
L.
Pezzè
and
A.
Smerzi
, “
Heisenberg-limited noisy atomic clock using a hybrid coherent and squeezed state protocol
,”
Phys. Rev. Lett.
125
,
210503
(
2020
).
92.
N.
Shiga
and
M.
Takeuchi
, “
Locking the local oscillator phase to the atomic phase via weak measurement
,”
New J. Phys.
14
,
023034
(
2012
).
93.
R.
Kohlhaas
,
A.
Bertoldi
,
E.
Cantin
,
A.
Aspect
,
A.
Landragin
, and
P.
Bouyer
, “
Phase locking a clock oscillator to a coherent atomic ensemble
,”
Phys. Rev. X
5
,
021011
(
2015
).
94.
M.
Kritsotakis
,
S. S.
Szigeti
,
J. A.
Dunningham
, and
S. A.
Haine
, “
Optimal matter-wave gravimetry
,”
Phys. Rev. A
98
,
023629
(
2018
).
95.
M.
Kasevich
and
S.
Chu
, “
Atomic interferometry using stimulated Raman transitions
,”
Phys. Rev. Lett.
67
,
181
184
(
1991
).
96.
P. A.
Altin
,
M. T.
Johnsson
,
V.
Negnevitsky
,
G. R.
Dennis
,
R. P.
Anderson
,
J. E.
Debs
,
S. S.
Szigeti
,
K. S.
Hardman
,
S.
Bennetts
,
G. D.
McDonald
,
L. D.
Turner
,
J. D.
Close
, and
N. P.
Robins
, “
Precision atomic gravimeter based on bragg diffraction
,”
New J. Phys.
15
,
023009
(
2013
).
97.
T. L.
Gustavson
,
A.
Landragin
, and
M. A.
Kasevich
, “
Rotation sensing with a dual atom-interferometer Sagnac gyroscope
,”
Classical Quantum Gravity
17
,
2385
(
2000
).
98.
J.
Anandan
, “
Sagnac effect in relativistic and nonrelativistic physics
,”
Phys. Rev. D
24
,
338
346
(
1981
).
99.
A. D.
Cronin
,
J.
Schmiedmayer
, and
D. E.
Pritchard
, “
Optics and interferometry with atoms and molecules
,”
Rev. Mod. Phys.
81
,
1051
1129
(
2009
).
100.
S. A.
Haine
, “
Mean-field dynamics and Fisher information in matter wave interferometry
,”
Phys. Rev. Lett.
116
,
230404
(
2016
).
101.
A.
Peters
,
K. Y.
Chung
, and
S.
Chu
, “
Measurement of gravitational acceleration by dropping atoms
,”
Nature
400
,
849
852
(
1999
).
102.
H.
Müller
,
S-w.
Chiow
,
S.
Herrmann
,
S.
Chu
, and
K.-Y.
Chung
, “
Atom-interferometry tests of the isotropy of post-Newtonian gravity
,”
Phys. Rev. Lett.
100
,
031101
(
2008
).
103.
K. S.
Hardman
,
P. J.
Everitt
,
G. D.
McDonald
,
P.
Manju
,
P. B.
Wigley
,
M. A.
Sooriyabandara
,
C. C. N.
Kuhn
,
J. E.
Debs
,
J. D.
Close
, and
N. P.
Robins
, “
Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: A high precision, quantum sensor
,”
Phys. Rev. Lett.
117
,
138501
(
2016
).
104.
T. M.
Niebauer
,
G. S.
Sasagawa
,
J. E.
Faller
,
R.
Hilt
, and
F.
Klopping
, “
A new generation of absolute gravimeters
,”
Metrologia
32
,
159
180
(
1995
).
105.
J. M.
McGuirk
,
G. T.
Foster
,
J. B.
Fixler
,
M. J.
Snadden
, and
M. A.
Kasevich
, “
Sensitive absolute-gravity gradiometry using atom interferometry
,”
Phys. Rev. A
65
,
033608
(
2002
).
106.
G.
D'Amico
,
F.
Borselli
,
L.
Cacciapuoti
,
M.
Prevedelli
,
G.
Rosi
,
F.
Sorrentino
, and
G. M.
Tino
, “
Bragg interferometer for gravity gradient measurements
,”
Phys. Rev. A
93
,
063628
(
2016
).
107.
X.
Wu
,
Z.
Pagel
,
B. S.
Malek
,
T. H.
Nguyen
,
F.
Zi
,
D. S.
Scheirer
, and
H.
Müller
, “
Gravity surveys using a mobile atom interferometer
,”
Sci. Adv.
5
,
eaax0800
(
2019
).
108.
D.
Schlippert
,
J.
Hartwig
,
H.
Albers
,
L. L.
Richardson
,
C.
Schubert
,
A.
Roura
,
W. P.
Schleich
,
W.
Ertmer
, and
E. M.
Rasel
, “
Quantum test of the universality of free fall
,”
Phys. Rev. Lett.
112
,
203002
(
2014
).
109.
L.
Zhou
,
S.
Long
,
B.
Tang
,
X.
Chen
,
F.
Gao
,
W.
Peng
,
W.
Duan
,
J.
Zhong
,
Z.
Xiong
,
J.
Wang
,
Y.
Zhang
, and
M.
Zhan
, “
Test of equivalence principle at 10 8 level by a dual-species double-diffraction Raman atom interferometer
,”
Phys. Rev. Lett.
115
,
013004
(
2015
).
110.
G.
Rosi
,
G.
D'Amico
,
L.
Cacciapuoti
,
F.
Sorrentino
,
M.
Prevedelli
,
M.
Zych
,
Č.
Brukner
, and
G. M.
Tino
, “
Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states
,”
Nat. Commun.
8
,
15529
(
2017
).
111.
R.
Geiger
,
V.
Ménoret
,
G.
Stern
,
N.
Zahzam
,
P.
Cheinet
,
B.
Battelier
,
A.
Villing
,
F.
Moron
,
M.
Lours
,
Y.
Bidel
,
A.
Bresson
,
A.
Landragin
, and
P.
Bouyer
, “
Detecting inertial effects with airborne matter-wave interferometry
,”
Nat. Commun.
2
,
474
(
2011
).
112.
D. S.
Durfee
,
Y. K.
Shaham
, and
M. A.
Kasevich
, “
Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope
,”
Phys. Rev. Lett.
97
,
240801
(
2006
).
113.
C. L.
Garrido Alzar
, “
Compact chip-scale guided cold atom gyrometers for inertial navigation: Enabling technologies and design study
,”
AVS Quantum Sci.
1
,
014702
(
2019
).
114.
D.
Savoie
,
M.
Altorio
,
B.
Fang
,
L. A.
Sidorenkov
,
R.
Geiger
, and
A.
Landragin
, “
Interleaved atom interferometry for high-sensitivity inertial measurements
,”
Sci. Adv.
4
,
eaau7948
(
2018
).
115.
G.-B.
Jo
,
Y.
Shin
,
S.
Will
,
T. A.
Pasquini
,
M.
Saba
,
W.
Ketterle
,
D. E.
Pritchard
,
M.
Vengalattore
, and
M.
Prentiss
, “
Long phase coherence time and number squeezing of two Bose–Einstein condensates on an atom chip
,”
Phys. Rev. Lett.
98
,
030407
(
2007
).
116.
S.
Wu
,
E.
Su
, and
M.
Prentiss
, “
Demonstration of an area-enclosing guided-atom interferometer for rotation sensing
,”
Phys. Rev. Lett.
99
,
173201
(
2007
).
117.
J. H. T.
Burke
and
C. A.
Sackett
, “
Scalable Bose–Einstein-condensate Sagnac interferometer in a linear trap
,”
Phys. Rev. A
80
,
061603
(
2009
).
118.
L.
Qi
,
Z.
Hu
,
T.
Valenzuela
,
Y.
Zhang
,
Y.
Zhai
,
W.
Quan
,
N.
Waltham
, and
J.
Fang
, “
Magnetically guided cesium interferometer for inertial sensing
,”
Appl. Phys. Lett.
110
,
153502
(
2017
).
119.
E. R.
Moan
,
R. A.
Horne
,
T.
Arpornthip
,
Z.
Luo
,
A. J.
Fallon
,
S. J.
Berl
, and
C. A.
Sackett
, “
Quantum rotation sensing with dual Sagnac interferometers in an atom-optical waveguide
,”
Phys. Rev. Lett.
124
,
120403
(
2020
).
120.
H.
Müller
,
S-w
Chiow
, and
S.
Chu
, “
Atom-wave diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts
,”
Phys. Rev. A
77
,
023609
(
2008
).
121.
J. E.
Debs
,
P. A.
Altin
,
T. H.
Barter
,
D.
Döring
,
G. R.
Dennis
,
G.
McDonald
,
R. P.
Anderson
,
J. D.
Close
, and
N. P.
Robins
, “
Cold-atom gravimetry with a Bose-Einstein condensate
,”
Phys. Rev. A
84
,
033610
(
2011
).
122.
S. S.
Szigeti
,
J. E.
Debs
,
J. J.
Hope
,
N. P.
Robins
, and
J. D.
Close
, “
Why momentum width matters for atom interferometry with Bragg pulses
,”
New J. Phys.
14
,
023009
(
2012
).
123.
N. P.
Robins
,
P. A.
Altin
,
J. E.
Debs
, and
J. D.
Close
, “
Atom lasers: Production, properties and prospects for precision inertial measurement
,”
Phys. Rep.
529
,
265
296
(
2013
).
124.
P. A.
Altin
,
G.
McDonald
,
D.
Döring
,
J. E.
Debs
,
T. H.
Barter
,
J. D.
Close
,
N. P.
Robins
,
S. A.
Haine
,
T. M.
Hanna
, and
R. P.
Anderson
, “
Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates
,”
New J. Phys.
13
,
065020
(
2011
).
125.
S. A.
Haine
, “
Quantum noise in bright soliton matterwave interferometry
,”
New J. Phys.
20
,
033009
(
2018
).
126.
S. S.
Szigeti
,
S. P.
Nolan
,
J. D.
Close
, and
S. A.
Haine
, “
High-precision quantum-enhanced gravimetry with a Bose-Einstein condensate
,”
Phys. Rev. Lett.
125
,
100402
(
2020
).
127.
F.
Anders
,
A.
Idel
,
P.
Feldmann
,
D.
Bondarenko
,
S.
Loriani
,
K.
Lange
,
J.
Peise
,
M.
Gersemann
,
B.
Meyer
,
S.
Abend
,
N.
Gaaloul
,
C.
Schubert
,
D.
Schlippert
,
L.
Santos
,
E.
Rasel
, and
C.
Klempt
, “
Momentum entanglement for atom interferometry
,” arXiv:2010.15796 [quant-ph] (
2020
).
128.
G.
Santarelli
,
P.
Laurent
,
P.
Lemonde
,
A.
Clairon
,
A. G.
Mann
,
S.
Chang
,
A. N.
Luiten
, and
C.
Salomon
, “
Quantum projection noise in an atomic fountain: A high stability cesium frequency standard
,”
Phys. Rev. Lett.
82
,
4619
4622
(
1999
).
129.
J. M.
McGuirk
,
G. T.
Foster
,
J. B.
Fixler
, and
M. A.
Kasevich
, “
Low-noise detection of ultracold atoms
,”
Opt. Lett.
26
,
364
366
(
2001
).
130.
S.
Bize
,
P.
Laurent
,
M.
Abgrall
,
H.
Marion
,
I.
Maksimovic
,
L.
Cacciapuoti
,
J.
Grünert
,
C.
Vian
,
F. P.
dos Santos
,
P.
Rosenbusch
,
P.
Lemonde
,
G.
Santarelli
,
P.
Wolf
,
A.
Clairon
,
A.
Luiten
,
M.
Tobar
, and
C.
Salomon
, “
Cold atom clocks and applications
,”
J. Phys. B
38
,
S449
(
2005
).
131.
A.
Gauguet
,
B.
Canuel
,
T.
Lévèque
,
W.
Chaibi
, and
A.
Landragin
, “
Characterization and limits of a cold-atom Sagnac interferometer
,”
Phys. Rev. A
80
,
063604
(
2009
).
132.
I. D.
Leroux
,
M. H.
Schleier-Smith
, and
V.
Vuletić
, “
Implementation of cavity squeezing of a collective atomic spin
,”
Phys. Rev. Lett.
104
,
073602
(
2010
).
133.
O.
Hosten
,
R.
Krishnakumar
,
N. J.
Engelsen
, and
M. A.
Kasevich
, “
Quantum phase magnification
,”
Science
352
,
1552
1555
(
2016
).
134.
J.
Hu
,
W.
Chen
,
Z.
Vendeiro
,
H.
Zhang
, and
V.
Vuletić
, “
Entangled collective-spin states of atomic ensembles under nonuniform atom-light interaction
,”
Phys. Rev. A
92
,
063816
(
2015
).
135.
Y.
Wu
,
R.
Krishnakumar
,
J.
Martínez-Rincón
,
B. K.
Malia
,
O.
Hosten
, and
M. A.
Kasevich
, “
Retrieval of cavity-generated atomic spin squeezing after free-space release
,”
Phys. Rev. A
102
,
012224
(
2020
).
136.
A.
Kuzmich
,
N. P.
Bigelow
, and
L.
Mandel
, “
Atomic quantum non-demolition measurements and squeezing
,”
Europhys. Lett.
42
,
481
(
1998
).
137.
T.
Takano
,
M.
Fuyama
,
R.
Namiki
, and
Y.
Takahashi
, “
Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half
,”
Phys. Rev. Lett.
102
,
033601
(
2009
).
138.
A.
Louchet-Chauvet
,
J.
Appel
,
J. J.
Renema
,
D.
Oblak
,
N.
Kjaergaard
, and
E. S.
Polzik
, “
Entanglement-assisted atomic clock beyond the projection noise limit
,”
New J. Phys.
12
,
065032
(
2010
).
139.
M.
Koschorreck
,
M.
Napolitano
,
B.
Dubost
, and
M. W.
Mitchell
, “
Sub-projection-noise sensitivity in broadband atomic magnetometry
,”
Phys. Rev. Lett.
104
,
093602
(
2010
).
140.
R. J.
Sewell
,
M.
Koschorreck
,
M.
Napolitano
,
B.
Dubost
,
N.
Behbood
, and
M. W.
Mitchell
, “
Magnetic sensitivity beyond the projection noise limit by spin squeezing
,”
Phys. Rev. Lett.
109
,
253605
(
2012
).
141.
Z.
Chen
,
J. G.
Bohnet
,
S. R.
Sankar
,
J.
Dai
, and
J. K.
Thompson
, “
Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting
,”
Phys. Rev. Lett.
106
,
133601
(
2011
).
142.
D. M.
Stamper-Kurn
and
M.
Ueda
, “
Spinor Bose gases: Symmetries, magnetism, and quantum dynamics
,”
Rev. Mod. Phys.
85
,
1191
1244
(
2013
).
143.
H.
Schmaljohann
,
M.
Erhard
,
J.
Kronjäger
,
M.
Kottke
,
S.
van Staa
,
L.
Cacciapuoti
,
J. J.
Arlt
,
K.
Bongs
, and
K.
Sengstock
, “
Dynamics of F = 2 spinor Bose-Einstein condensates
,”
Phys. Rev. Lett.
92
,
040402
(
2004
).
144.
M.
Chang
,
Q.
Qin
,
W.
Zhang
,
L.
You
, and
M. S.
Chapman
, “
Coherent spinor dynamics in a spin-1 Bose condensate
,”
Nat. Phys.
1
,
111
116
(
2005
).
145.
C.
Gross
,
H.
Strobel
,
E.
Nicklas
,
T.
Zibold
,
N.
Bar-Gill
,
G.
Kurizki
, and
M. K.
Oberthaler
, “
Atomic homodyne detection of continuous-variable entangled twin-atom states
,”
Nature
480
,
219
223
(
2011
).
146.
E. M.
Bookjans
,
C. D.
Hamley
, and
M. S.
Chapman
, “
Strong quantum spin correlations observed in atomic spin mixing
,”
Phys. Rev. Lett.
107
,
210406
(
2011
).
147.
C. D.
Hamley
,
C. S.
Gerving
,
T. M.
Hoang
,
E. M.
Bookjans
, and
M. S.
Chapman
, “
Spin-nematic squeezed vacuum in a quantum gas
,”
Nat. Phys.
8
,
305
308
(
2012
).
148.
Y.-Q.
Zou
,
L.-N.
Wu
,
Q.
Liu
,
X.-Y.
Luo
,
S.-F.
Guo
,
J.-H.
Cao
,
M. K.
Tey
, and
L.
You
, “
Beating the classical precision limit with spin-1 Dicke states of more than 10, 000 atoms
,”
Proc. Natl. Acad. Sci.
115
,
6381
6385
(
2018
).
149.
M.
Gabbrielli
,
L.
Pezzè
, and
A.
Smerzi
, “
Spin-mixing interferometry with Bose-Einstein condensates
,”
Phys. Rev. Lett.
115
,
163002
(
2015
).
150.
T.
Macrì
,
A.
Smerzi
, and
L.
Pezzè
, “
Loschmidt echo for quantum metrology
,”
Phys. Rev. A
94
,
010102
(
2016
).
151.
I.
Kruse
,
K.
Lange
,
J.
Peise
,
B.
Lücke
,
L.
Pezzè
,
J.
Arlt
,
W.
Ertmer
,
C.
Lisdat
,
L.
Santos
,
A.
Smerzi
, and
C.
Klempt
, “
Improvement of an atomic clock using squeezed vacuum
,”
Phys. Rev. Lett.
117
,
143004
(
2016
).
152.
S. S.
Szigeti
,
R. J.
Lewis-Swan
, and
S. A.
Haine
, “
Pumped-up SU(1,1) interferometry
,”
Phys. Rev. Lett.
118
,
150401
(
2017
).
153.
P.
Sompet
,
S. S.
Szigeti
,
E.
Schwartz
,
A. S.
Bradley
, and
M. F.
Andersen
, “
Thermally robust spin correlations between two 85Rb atoms in an optical microtrap
,”
Nat. Commun.
10
,
1889
(
2019
).
154.
T.
Kim
,
O.
Pfister
,
M. J.
Holland
,
J.
Noh
, and
J. L.
Hall
, “
Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons
,”
Phys. Rev. A
57
,
4004
4013
(
1998
).
155.
S. A.
Haine
and
S. S.
Szigeti
, “
Quantum metrology with mixed states: When recovering lost information is better than never losing it
,”
Phys. Rev. A
92
,
032317
(
2015
).
156.
L.
Salvi
,
N.
Poli
,
V.
Vuletić
, and
G. M.
Tino
, “
Squeezing on momentum states for atom interferometry
,”
Phys. Rev. Lett.
120
,
033601
(
2018
).
157.
A.
Shankar
,
G. P.
Greve
,
B.
Wu
,
J. K.
Thompson
, and
M.
Holland
, “
Continuous real-time tracking of a quantum phase below the standard quantum limit
,”
Phys. Rev. Lett.
122
,
233602
(
2019
).
158.
M.
Kritsotakis
,
J. A.
Dunningham
, and
S. A.
Haine
, “
Spin squeezing of a Bose-Einstein condensate via a quantum nondemolition measurement for quantum-enhanced atom interferometry
,”
Phys. Rev. A
103
,
023318
(
2021
).
159.
M. G.
Moore
,
O.
Zobay
, and
P.
Meystre
, “
Quantum optics of a Bose-Einstein condensate coupled to a quantized light field
,”
Phys. Rev. A
60
,
1491
1506
(
1999
).
160.
H.
Jing
,
J.-L.
Chen
, and
M.-L.
Ge
, “
Quantum-dynamical theory for squeezing the output of a Bose-Einstein condensate
,”
Phys. Rev. A
63
,
015601
(
2000
).
161.
M.
Fleischhauer
and
S.
Gong
, “
Stationary source of nonclassical or entangled atoms
,”
Phys. Rev. Lett.
88
,
070404
(
2002
).
162.
S. A.
Haine
and
J. J.
Hope
, “
Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams
,”
Phys. Rev. A
72
,
033601
(
2005
).
163.
S. A.
Haine
and
J. J.
Hope
, “
A multi-mode model of a non-classical atom laser produced by outcoupling from a Bose-Einstein condensate with squeezed light
,”
Laser Phys. Lett.
2
,
597
602
(
2005
).
164.
S. A.
Haine
,
M. K.
Olsen
, and
J. J.
Hope
, “
Generating controllable atom-light entanglement with a Raman atom laser system
,”
Phys. Rev. Lett.
96
,
133601
(
2006
).
165.
K.
Hammerer
,
A. S.
Sørensen
, and
E. S.
Polzik
, “
Quantum interface between light and atomic ensembles
,”
Rev. Mod. Phys.
82
,
1041
1093
(
2010
).
166.
J.
Hald
,
J.
Sørensen
,
C.
Schori
, and
E.
Polzik
, “
Spin squeezed atoms: A macroscopic entangled ensemble created by light
,”
Phys. Rev. Lett.
83
,
1319
1322
(
1999
).
167.
S. A.
Haine
, “
Information-recycling beam splitters for quantum enhanced atom interferometry
,”
Phys. Rev. Lett.
110
,
053002
(
2013
).
168.
S. S.
Szigeti
,
B.
Tonekaboni
,
W. Y. S.
Lau
,
S. N.
Hood
, and
S. A.
Haine
, “
Squeezed-light-enhanced atom interferometry below the standard quantum limit
,”
Phys. Rev. A
90
,
063630
(
2014
).
169.
B.
Tonekaboni
,
S. A.
Haine
, and
S. S.
Szigeti
, “
Heisenberg-limited metrology with a squeezed vacuum state, three-mode mixing, and information recycling
,”
Phys. Rev. A
91
,
033616
(
2015
).
170.
S. A.
Haine
,
S. S.
Szigeti
,
M. D.
Lang
, and
C. M.
Caves
, “
Heisenberg-limited metrology with information recycling
,”
Phys. Rev. A
91
,
041802
(
2015
).
171.
S. A.
Haine
and
W. Y. S.
Lau
, “
Generation of atom-light entanglement in an optical cavity for quantum enhanced atom interferometry
,”
Phys. Rev. A
93
,
023607
(
2016
).
172.
D.
Schneble
,
G. K.
Campbell
,
E. W.
Streed
,
M.
Boyd
,
D. E.
Pritchard
, and
W.
Ketterle
, “
Raman amplification of matter waves
,”
Phys. Rev. A
69
,
041601
(
2004
).
173.
Y.
Yoshikawa
,
T.
Sugiura
,
Y.
Torii
, and
T.
Kuga
, “
Observation of superradiant Raman scattering in a Bose-Einstein condensate
,”
Phys. Rev. A
69
,
041603
(
2004
).
174.
M. M.
Cola
and
N.
Piovella
, “
Theory of collective Raman scattering from a Bose-Einstein condensate
,”
Phys. Rev. A
70
,
045601
(
2004
).
175.
H.
Uys
and
P.
Meystre
, “
Theory of coherent Raman superradiance imaging of condensed Bose gases
,”
Phys. Rev. A
75
,
033805
(
2007
).
176.
A.
Hilliard
,
F.
Kaminski
,
R.
le Targat
,
C.
Olausson
,
E. S.
Polzik
, and
J. H.
Müller
, “
Rayleigh superradiance and dynamic Bragg gratings in an end-pumped Bose-Einstein condensate
,”
Phys. Rev. A
78
,
051403
(
2008
).
177.
M. G.
Moore
and
P.
Meystre
, “
Generating entangled atom-photon pairs from Bose-Einstein condensates
,”
Phys. Rev. Lett.
85
,
5026
5029
(
2000
).
178.
K.
Gietka
,
F.
Mivehvar
, and
H.
Ritsch
, “
Supersolid-based gravimeter in a ring cavity
,”
Phys. Rev. Lett.
122
,
190801
(
2019
).
179.
J.
Peise
,
B.
Lücke
,
L.
Pezzé
,
F.
Deuretzbacher
,
W.
Ertmer
,
J.
Arlt
,
A.
Smerzi
,
L.
Santos
, and
C.
Klempt
, “
Interaction-free measurements by quantum Zeno stabilization of ultracold atoms
,”
Nat. Commun.
6
,
6811
(
2015
).
180.
X.-Y.
Luo
,
Y.-Q.
Zou
,
L.-N.
Wu
,
Q.
Liu
,
M.-F.
Han
,
M. K.
Tey
, and
L.
You
, “
Deterministic entanglement generation from driving through quantum phase transitions
,”
Science
355
,
620
(
2017
).
181.
S. P.
Nolan
,
J.
Sabbatini
,
M. W. J.
Bromley
,
M. J.
Davis
, and
S. A.
Haine
, “
Quantum enhanced measurement of rotations with a spin-1 Bose-Einstein condensate in a ring trap
,”
Phys. Rev. A
93
,
023616
(
2016
).
182.
S.
Dürr
,
T.
Volz
, and
G.
Rempe
, “
Dissociation of ultracold molecules with Feshbach resonances
,”
Phys. Rev. A
70
,
031601
(
2004
).
183.
C.
McKenzie
,
J.
Hecker Denschlag
,
H.
Häffner
,
A.
Browaeys
,
L. E. E.
de Araujo
,
F. K.
Fatemi
,
K. M.
Jones
,
J. E.
Simsarian
,
D.
Cho
,
A.
Simoni
,
E.
Tiesinga
,
P. S.
Julienne
,
K.
Helmerson
,
P. D.
Lett
,
S. L.
Rolston
, and
W. D.
Phillips
, “
Photoassociation of sodium in a Bose-Einstein condensate
,”
Phys. Rev. Lett.
88
,
120403
(
2002
).
184.
K. V.
Kheruntsyan
,
M. K.
Olsen
, and
P. D.
Drummond
, “
Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate
,”
Phys. Rev. Lett.
95
,
150405
(
2005
).
185.
L.
Deng
,
E. W.
Hagley
,
J.
Wen
,
M.
Trippenbach
,
Y.
Band
,
P. S.
Julienne
,
J. E.
Simsarian
,
K.
Helmerson
,
S. L.
Rolston
, and
W. D.
Phillips
, “
Four-wave mixing with matter waves
,”
Nature
398
,
218
220
(
1999
).
186.
J. M.
Vogels
,
K.
Xu
, and
W.
Ketterle
, “
Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates
,”
Phys. Rev. Lett.
89
,
020401
(
2002
).
187.
J. M.
Vogels
,
J. K.
Chin
, and
W.
Ketterle
, “
Coherent collisions between Bose-Einstein condensates
,”
Phys. Rev. Lett.
90
,
030403
(
2003
).
188.
P.
Ziń
,
J.
Chwedeńczuk
,
A.
Veitia
,
K.
Rzążewski
, and
M.
Trippenbach
, “
Quantum multimode model of elastic scattering from Bose-Einstein condensates
,”
Phys. Rev. Lett.
94
,
200401
(
2005
).
189.
P.
Deuar
and
P. D.
Drummond
, “
Correlations in a BEC collision: First-principles quantum dynamics with 150 000 atoms
,”
Phys. Rev. Lett.
98
,
120402
(
2007
).
190.
A. J.
Ferris
,
M. K.
Olsen
, and
M. J.
Davis
, “
Atomic entanglement generation and detection via degenerate four-wave mixing of a Bose-Einstein condensate in an optical lattice
,”
Phys. Rev. A
79
,
043634
(
2009
).
191.
M.
Ögren
and
K. V.
Kheruntsyan
, “
Atom-atom correlations in colliding Bose-Einstein condensates
,”
Phys. Rev. A
79
,
021606
(
2009
).
192.
R. G.
Dall
,
L. J.
Byron
,
A. G.
Truscott
,
G. R.
Dennis
,
M. T.
Johnsson
, and
J. J.
Hope
, “
Paired-atom laser beams created via four-wave mixing
,”
Phys. Rev. A
79
,
011601
(
2009
).
193.
G. R.
Dennis
and
M. T.
Johnsson
, “
Generation of directional, coherent matter beams through dynamical instabilities in Bose-Einstein condensates
,”
Phys. Rev. A
82
,
033615
(
2010
).
194.
S. A.
Haine
and
A. J.
Ferris
, “
Surpassing the standard quantum limit in an atom interferometer with four-mode entanglement produced from four-wave mixing
,”
Phys. Rev. A
84
,
043624
(
2011
).
195.
A.
Perrin
,
H.
Chang
,
V.
Krachmalnicoff
,
M.
Schellekens
,
D.
Boiron
,
A.
Aspect
, and
C. I.
Westbrook
, “
Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose-Einstein condensates
,”
Phys. Rev. Lett.
99
,
150405
(
2007
).
196.
J.-C.
Jaskula
,
M.
Bonneau
,
G. B.
Partridge
,
V.
Krachmalnicoff
,
P.
Deuar
,
K. V.
Kheruntsyan
,
A.
Aspect
,
D.
Boiron
, and
C. I.
Westbrook
, “
Sub-Poissonian number differences in four-wave mixing of matter waves
,”
Phys. Rev. Lett.
105
,
190402
(
2010
).
197.
R.
Bücker
,
J.
Grond
,
S.
Manz
,
T.
Berrada
,
T.
Betz
,
C.
Koller
,
U.
Hohenester
,
T.
Schumm
,
A.
Perrin
, and
J.
Schmiedmayer
, “
Twin-atom beams
,”
Nat. Phys.
7
,
608
611
(
2011
).
198.
D.
Pertot
,
B.
Gadway
, and
D.
Schneble
, “
Collinear four-wave mixing of two-component matter waves
,”
Phys. Rev. Lett.
104
,
200402
(
2010
).
199.
S. A.
Haine
,
J.
Lau
,
R. P.
Anderson
, and
M. T.
Johnsson
, “
Self-induced spatial dynamics to enhance spin squeezing via one-axis twisting in a two-component Bose-Einstein condensate
,”
Phys. Rev. A
90
,
023613
(
2014
).
200.
S. P.
Nolan
and
S. A.
Haine
, “
Generating macroscopic superpositions with interacting Bose-Einstein condensates: Multimode speedups and speed limits
,”
Phys. Rev. A
98
,
063606
(
2018
).
201.
S. L.
Cornish
,
N. R.
Claussen
,
J. L.
Roberts
,
E. A.
Cornell
, and
C. E.
Wieman
, “
Stable 85 Rb Bose-Einstein condensates with widely tunable interactions
,”
Phys. Rev. Lett.
85
,
1795
1798
(
2000
).
202.
M.
Fattori
,
C.
D'Errico
,
G.
Roati
,
M.
Zaccanti
,
M.
Jona-Lasinio
,
M.
Modugno
,
M.
Inguscio
, and
G.
Modugno
, “
Atom interferometry with a weakly interacting Bose-Einstein condensate
,”
Phys. Rev. Lett.
100
,
080405
(
2008
).
203.
G. D.
McDonald
,
C. C. N.
Kuhn
,
K. S.
Hardman
,
S.
Bennetts
,
P. J.
Everitt
,
P. A.
Altin
,
J. E.
Debs
,
J. D.
Close
, and
N. P.
Robins
, “
Bright solitonic matter-wave interferometer
,”
Phys. Rev. Lett.
113
,
013002
(
2014
).
204.
P. J.
Everitt
,
M. A.
Sooriyabandara
,
M.
Guasoni
,
P. B.
Wigley
,
C. H.
Wei
,
G. D.
McDonald
,
K. S.
Hardman
,
P.
Manju
,
J. D.
Close
,
C. C. N.
Kuhn
,
S. S.
Szigeti
,
Y. S.
Kivshar
, and
N. P.
Robins
, “
Observation of a modulational instability in Bose-Einstein condensates
,”
Phys. Rev. A
96
,
041601
(
2017
).
205.
W.
Muessel
,
H.
Strobel
,
D.
Linnemann
,
T.
Zibold
,
B.
Juliá-Díaz
, and
M. K.
Oberthaler
, “
Twist-and-turn spin squeezing in Bose-Einstein condensates
,”
Phys. Rev. A
92
,
023603
(
2015
).
206.
G.
Sorelli
,
M.
Gessner
,
A.
Smerzi
, and
L.
Pezzè
, “
Fast and optimal generation of entanglement in bosonic Josephson junctions
,”
Phys. Rev. A
99
,
022329
(
2019
).
207.
R. L.
Fagaly
, “
Superconducting quantum interference device instruments and applications
,”
Rev. Sci. Instrum.
77
,
101101
(
2006
).
208.
J. F.
Barry
,
J. M.
Schloss
,
E.
Bauch
,
M. J.
Turner
,
C. A.
Hart
,
L. M.
Pham
, and
R. L.
Walsworth
, “
Sensitivity optimization for NV-diamond magnetometry
,”
Rev. Mod. Phys.
92
,
015004
(
2020
).
209.
M. W.
Mitchell
and
S.
Palacios Alvarez
, “
Colloquium: Quantum limits to the energy resolution of magnetic field sensors
,”
Rev. Mod. Phys.
92
,
021001
(
2020
).
210.
T. M.
Tierney
,
N.
Holmes
,
S.
Mellor
,
J. D.
López
,
G.
Roberts
,
R. M.
Hill
,
E.
Boto
,
J.
Leggett
,
V.
Shah
,
M. J.
Brookes
,
R.
Bowtell
, and
G. R.
Barnes
, “
Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography
,”
NeuroImage
199
,
598
608
(
2019
).
211.
K.
Jensen
,
R.
Budvytyte
,
R. A.
Thomas
,
T.
Wang
,
A. M.
Fuchs
,
M. V.
Balabas
,
G.
Vasilakis
,
L. D.
Mosgaard
,
H. C.
Stærkind
,
J. H.
Müller
,
T.
Heimburg
,
S.-P.
Olesen
, and
E. S.
Polzik
, “
Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
,”
Sci. Rep.
6
,
29638
(
2016
).
212.
K.
Jensen
,
M. A.
Skarsfeldt
,
H.
Stærkind
,
J.
Arnbak
,
M. V.
Balabas
,
S.-P.
Olesen
,
B. H.
Bentzen
, and
E. S.
Polzik
, “
Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer
,”
Sci. Rep.
8
,
16218
(
2018
).
213.
R.
Zhang
,
W.
Xiao
,
Y.
Ding
,
Y.
Feng
,
X.
Peng
,
L.
Shen
,
C.
Sun
,
T.
Wu
,
Y.
Wu
,
Y.
Yang
,
Z.
Zheng
,
X.
Zhang
,
J.
Chen
, and
H.
Guo
, “
Recording brain activities in unshielded earth's field with optically pumped atomic magnetometers
,”
Sci. Adv.
6
,
eaba8792
(
2020
).
214.
W.
Wasilewski
,
K.
Jensen
,
H.
Krauter
,
J. J.
Renema
,
M. V.
Balabas
, and
E. S.
Polzik
, “
Quantum noise limited and entanglement-assisted magnetometry
,”
Phys. Rev. Lett.
104
,
133601
(
2010
).
215.
S.-K.
Lee
,
K. L.
Sauer
,
S. J.
Seltzer
,
O.
Alem
, and
M. V.
Romalis
, “
Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance
,”
Appl. Phys. Lett.
89
,
214106
(
2006
).
216.
H. B.
Dang
,
A. C.
Maloof
, and
M. V.
Romalis
, “
Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer
,”
Appl. Phys. Lett.
97
,
151110
(
2010
).
217.
V.
Shah
,
G.
Vasilakis
, and
M. V.
Romalis
, “
High bandwidth atomic magnetometery with continuous quantum nondemolition measurements
,”
Phys. Rev. Lett.
104
,
013601
(
2010
).
218.
C. F.
Ockeloen
,
R.
Schmied
,
M. F.
Riedel
, and
P.
Treutlein
, “
Quantum metrology with a scanning probe atom interferometer
,”
Phys. Rev. Lett.
111
,
143001
(
2013
).
219.
W.
Muessel
,
H.
Strobel
,
D.
Linnemann
,
D.
Hume
, and
M.
Oberthaler
, “
Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates
,”
Phys. Rev. Lett.
113
,
103004
(
2014
).
220.
G. S.
Agarwal
,
R. R.
Puri
, and
R. P.
Singh
, “
Atomic Schrödinger cat states
,”
Phys. Rev. A
56
,
2249
2254
(
1997
).
221.
P.
Hyllus
,
L.
Pezzé
,
A.
Smerzi
, and
G.
Tóth
, “
Entanglement and extreme spin squeezing for a fluctuating number of indistinguishable particles
,”
Phys. Rev. A
86
,
012337
(
2012
).
222.
B.
Lücke
,
J.
Peise
,
G.
Vitagliano
,
J.
Arlt
,
L.
Santos
,
G.
Tóth
, and
C.
Klempt
, “
Detecting multiparticle entanglement of Dicke states
,”
Phys. Rev. Lett.
112
,
155304
(
2014
).
223.
G.
Vitagliano
,
I.
Apellaniz
,
I. n L.
Egusquiza
, and
G.
Tóth
, “
Spin squeezing and entanglement for an arbitrary spin
,”
Phys. Rev. A
89
,
032307
(
2014
).
224.
M.
Gessner
,
A.
Smerzi
, and
L.
Pezzè
, “
Metrological nonlinear squeezing parameter
,”
Phys. Rev. Lett.
122
,
090503
(
2019
).
225.
H.
Strobel
,
W.
Muessel
,
D.
Linnemann
,
T.
Zibold
,
D. B.
Hume
,
L.
Pezze
,
A.
Smerzi
, and
M. K.
Oberthaler
, “
Fisher information and entanglement of non-Gaussian spin states
,”
Science
345
,
424
427
(
2014
).
226.
F.
Haas
,
J.
Volz
,
R.
Gehr
,
J.
Reichel
, and
J.
Estève
, “
Entangled states of more than 40 atoms in an optical fiber cavity
,”
Science
344
,
180
(
2014
).
227.
R.
McConnell
,
H.
Zhang
,
J.
Hu
,
S.
Ćuk
, and
V.
Vuletić
, “
Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon
,”
Nature
519
,
439
442
(
2015
).
228.
D.
Linnemann
,
H.
Strobel
,
W.
Muessel
,
J.
Schulz
,
R. J.
Lewis-Swan
,
K. V.
Kheruntsyan
, and
M. K.
Oberthaler
, “
Quantum-enhanced sensing based on time reversal of nonlinear dynamics
,”
Phys. Rev. Lett.
117
,
013001
(
2016
).
229.
C.
Brif
,
B. P.
Ruzic
, and
G. W.
Biedermann
, “
Characterization of errors in interferometry with entangled atoms
,”
PRX Quantum
1
,
010306
(
2020
).
230.
S. P.
Nolan
and
S. A.
Haine
, “
Quantum Fisher information as a predictor of decoherence in the preparation of spin-cat states for quantum metrology
,”
Phys. Rev. A
95
,
043642
(
2017
).
231.
E.
Davis
,
G.
Bentsen
, and
M.
Schleier-Smith
, “
Approaching the Heisenberg limit without single-particle detection
,”
Phys. Rev. Lett.
116
,
053601
(
2016
).
232.
E.
Davis
,
G.
Bentsen
,
T.
Li
, and
M.
Schleier-Smith
, “
Advantages of interaction-based readout for quantum sensing
,”
101180Z
(
2017
).
233.
F.
Fröwis
,
P.
Sekatski
, and
W.
Dür
, “
Detecting large quantum Fisher information with finite measurement precision
,”
Phys. Rev. Lett.
116
,
090801
(
2016
).
234.
S. P.
Nolan
,
S. S.
Szigeti
, and
S. A.
Haine
, “
Optimal and robust quantum metrology using interaction-based readouts
,”
Phys. Rev. Lett.
119
,
193601
(
2017
).
235.
S. S.
Mirkhalaf
,
S. P.
Nolan
, and
S. A.
Haine
, “
Robustifying twist-and-turn entanglement with interaction-based readout
,”
Phys. Rev. A
97
,
053618
(
2018
).
236.
S. A.
Haine
, “
Using interaction-based readouts to approach the ultimate limit of detection-noise robustness for quantum-enhanced metrology in collective spin systems
,”
Phys. Rev. A
98
,
030303(R)
(
2018
).
237.
F.
Anders
,
L.
Pezzè
,
A.
Smerzi
, and
C.
Klempt
, “
Phase magnification by two-axis countertwisting for detection-noise robust interferometry
,”
Phys. Rev. A
97
,
043813
(
2018
).
238.
S. A.
Haine
and
J. J.
Hope
, “
Machine-designed sensor to make optimal use of entanglement-generating dynamics for quantum sensing
,”
Phys. Rev. Lett.
124
,
060402
(
2020
).
239.
R.
Fang
,
R.
Sarkar
, and
S. M.
Shahriar
, “
Enhancing the sensitivity of an atom interferometer to the Heisenberg limit using increased quantum noise
,”
J. Opt. Soc. Am. B
37
,
1974
1986
(
2020
).
240.
M.
Schulte
,
V. J.
Martínez-Lahuerta
,
M. S.
Scharnagl
, and
K.
Hammerer
, “
Ramsey interferometry with generalized one-axis twisting echoes
,”
Quantum
4
,
268
(
2020
).
241.
E. M.
Kessler
,
P.
Kómár
,
M.
Bishof
,
L.
Jiang
,
A. S.
Sørensen
,
J.
Ye
, and
M. D.
Lukin
, “
Heisenberg-limited atom clocks based on entangled qubits
,”
Phys. Rev. Lett.
112
,
190403
(
2014
).
242.
I.
Pogorelov
,
T.
Feldker
,
C. D.
Marciniak
,
G.
Jacob
,
V.
Podlesnic
,
M.
Meth
,
V.
Negnevitsky
,
M.
Stadler
,
K.
Lakhmanskiy
,
R.
Blatt
et al, “
A compact ion-trap quantum computing demonstrator
,” arXiv:2101.11390 (
2021
).
243.
A.
Omran
,
H.
Levine
,
A.
Keesling
,
G.
Semeghini
,
T. T.
Wang
,
S.
Ebadi
,
H.
Bernien
,
A. S.
Zibrov
,
H.
Pichler
,
S.
Choi
,
J.
Cui
,
M.
Rossignolo
,
P.
Rembold
,
S.
Montangero
,
T.
Calarco
,
M.
Endres
,
M.
Greiner
,
V.
Vuletić
, and
M. D.
Lukin
, “
Generation and manipulation of Schrödinger cat states in Rydberg atom arrays
,”
Science
365
,
570
574
(
2019
). https://science.sciencemag.org/content/365/6453/570.full.pdf.
244.
A. W.
Young
,
W. J.
Eckner
,
W. R.
Milner
,
D.
Kedar
,
M. A.
Norcia
,
E.
Oelker
,
N.
Schine
,
J.
Ye
, and
A. M.
Kaufman
, “
Half-minute-scale atomic coherence and high relative stability in a tweezer clock
,”
Nature
588
,
408
413
(
2020
).
245.
R.
Poldy
,
B. C.
Buchler
, and
J. D.
Close
, “
Single-atom detection with optical cavities
,”
Phys. Rev. A
78
,
013640
(
2008
).
You do not currently have access to this content.