The magnetically actuated robot has valuable potential in biomedicine, bioengineering, and biophysics for its capability to precisely manipulate particles or biological tissues. However, the deformability of rigid robots with predetermined shapes is limited, which constricts their functions and causes inconvenience for robots' movement in constricted space. In this study, we proposed a feasible and efficient ferrofluid-based robot for the transportation of tiny particles and blocks. In addition, a method to generate a patterned magnetic field is also introduced to model a ferrofluid-based robot with an adaptive shape. Benefiting from the paramagnetism and fluidity of the ferrofluid-based robot, it also demonstrates outstanding motion accuracy and output force on a superhydrophobic surface. Because of its excellent motion characteristics, high motion accuracy, and high measured output force, the proposed ferrofluid-based robot has great advantages in the field of microoperation. The correlation coefficient between the motion trajectory of the ferrofluid-based robot and the motion trajectory of the micro-stages is 0.9967. The position error is less than 1.5% of the total stroke.

1.
Z.
Liu
,
Y.
Cai
,
Y.
Wang
,
Y.
Nie
,
C.
Zhang
,
Y.
Xu
,
X.
Zhang
,
Y.
Lu
,
Z.
Wang
,
M.
Poo
, and
Q.
Sun
, “
Cloning of macaque monkeys by somatic cell nuclear transfer
,”
Cell
174
,
245
(
2018
).
2.
U.
Būtaitė
,
G.
Gibson
,
Y.-L.
Ho
,
M.
Taverne
,
J.
Taylor
, and
D.
Phillips
, “
Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation
,”
Nat. Commun.
10
,
1215
(
2019
).
3.
H.
Zang
,
X.
Zhang
,
B.
Zhu
, and
S.
Fatikow
, “
Recent advances in non-contact force sensors used for micro/nano manipulation
,”
Sens. Actuators, A.
296
,
155
177
(
2019
).
4.
Y.
Tu
,
F.
Peng
, and
D.
Wilson
, “
Motion manipulation of micro- and nanomotors
,”
Adv. Mater.
29
,
1701970
(
2017
).
5.
M.
Hagiwara
,
T.
Kawahara
,
Y.
Yamanishi
, and
F.
Arai
, “
Driving method of microtool by horizontally arranged permanent magnets for single cell manipulation
,”
Appl. Phys. Lett.
97
,
013701
(
2010
).
6.
M.
Villangca
,
D.
Palima
,
A.
Bañas
, and
J.
Glückstad
, “
Light-driven micro-tool equipped with a syringe function
,”
Light: Sci. Appl.
5
,
e16148
(
2016
).
7.
Y.
Ji
,
X.
Lin
,
H.
Zhang
,
Y.
Wu
,
J.
Li
, and
Q.
He
, “
Thermoresponsive polymer brush modulation on the direction of motion of phoretically driven Janus micromotors
,”
Angew. Chem., Int. Ed.
58
,
4184
(
2019
).
8.
X.
Lu
,
K.
Zhao
,
W.
Liu
,
D.
Yang
,
H.
Shen
,
H.
Peng
,
X.
Guo
,
J.
Li
, and
J.
Wang
, “
A human microrobot interface based on acoustic manipulation
,”
ACS Nano
13
,
11443
(
2019
).
9.
Y.
Dai
,
S.
Liang
,
Y.
Chen
,
Y.
Feng
,
D.
Chen
,
B.
Song
,
X.
Bai
,
D.
Zhang
,
L.
Feng
, and
F.
Arai
, “
Untethered octopus-inspired millirobot actuated by regular tetrahedron arranged magnetic field
,”
Adv. Intell. Syst.
2
,
2070053
(
2020
).
10.
L.
Feng
,
P.
Di
, and
F.
Arai
, “
High-precision motion of magnetic microrobot with ultrasonic levitation for 3d rotation of single oocyte
,”
Int. J. Rob. Res.
35
,
1445
(
2016
).
11.
J.
Giltinan
and
M.
Sitti
, “
Simultaneous six-degree-of-freedom control of a single-body magnetic microrobot
,”
IEEE Rob. Autom. Lett.
4
,
508
514
(
2019
).
12.
Y.
Liu
,
G.
Li
,
H.
Lu
,
Y.
Yang
,
Z.
Liu
,
W.
Shang
, and
Y.
Shen
, “
Magnetically actuated heterogeneous microcapsule-robot for construction of 3D bioartificial architectures
,”
ACS Appl. Mater. Interfaces
11
,
25664
(
2019
).
13.
J.
Li
,
B. E.
Fernández de Ávila
,
W.
Gao
,
L.
Zhang
, and
J.
Wang
, “
Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification
,”
Sci. Rob.
2
,
eaam6431
(
2017
).
14.
N.
Inomata
,
T.
Mizunuma
,
Y.
Yamanishi
, and
F.
Arai
, “
Omnidirectional actuation of magnetically driven microtool for cutting of oocyte in a chip
,”
Microelectromech. Syst., J.
20
,
383
388
(
2011
).
15.
O.
Cugat
,
J.
Delamare
, and
G.
Reyne
, “
Magnetic micro-actuators and systems (magmas)
,”
IEEE Trans. Magn.
39
,
3607
3612
(
2003
).
16.
M.
Abbes
,
K.
Belharet
,
H.
Mekki
, and
G.
Poisson
, “
Permanent magnets based actuator for microrobots navigation
,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
2019
), pp.
7062
7067
.
17.
X.
Bai
,
D.
Chen
,
W.
Zhang
,
H.
Ossian
,
Y.
Chen
,
Y.
Feng
,
L.
Feng
, and
F.
Arai
, “
Magnetically driven bionic millirobots with a low-delay automated actuation system for bioparticles manipulation
,”
Micromachines
11
,
231
(
2020
).
18.
J.
Timonen
,
M.
Latikka
,
L.
Leibler
,
R.
Ras
, and
O.
Ikkala
, “
Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces
,”
Science
341
,
253
257
(
2013
).
19.
H.
Hartshorne
,
C.
Backhouse
, and
W.
Lee
, “
Ferrofluid-based microchip pump and valve
,”
Sens. Actuators, B
99
,
592
600
(
2004
).
20.
R.-J.
Yang
,
H.-H.
Hou
,
Y.-N.
Wang
, and
L.-M.
Fu
, “
Micro-magnetofluidics in microfluidic systems: A review
,”
Sens. Actuators, B
224
,
1
(
2016
).
21.
K.
Zhang
,
Q. o Q-l
Liang
,
X.
Ai
,
P.
Hu
,
Y.
Wang
, and
G.
Luo
, “
On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase
,”
Lab Chip
11
,
1271
1275
(
2011
).
22.
A.
Hsu
,
A.
Wong-Foy
, and
R.
Pelrine
, “
Ferrofluid levitated micro/milli-robots
,” in
International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
(
2018
), pp.
1
7
.
23.
X.
Fan
,
X.
Dong
,
A.
Karacakol
,
H.
Xie
, and
M.
Sitti
, “
Reconfigurable multifunctional ferrofluid droplet robots
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
27916
(
2020
).
24.
T.
Tone
and
K.
Suzuki
, “
Deforming control for object transportation with ferrofluid-based sheet-type soft robot
,” in
IEEE International Conference on Automation Science and Engineering (CASE)
(
2015
), pp.
1171
1176
.
25.
J.
Israelachvili
, “
Force-measuring techniques
,” in Intermolecular and Surface Forces, (Academic Press,
2011
), pp.
223
252
.
26.
R.
Good
, “
Contact angle, wetting, and adhesion: A critical review
,”
J Adhes. Sci. Technol.
6
,
1269
1302
(
1992
).
27.
R. E.
Rosensweig
, Ferrohydrodynamics (Dover Books on Physics) (Dover,
2014
).
28.
X.
Liu
,
H.
Chen
,
Z.
Zhao
,
Y.
Yan
, and
D.
Zhang
, “
Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications
,”
Surf. Coat. Technol.
374
,
889
(
2019
).
You do not currently have access to this content.