We present self-assembly of InAs/InAlAs quantum dots by the droplet epitaxy technique on vicinal GaAs(111)A substrates. The small miscut angle, while maintaining the symmetries imposed on the quantum dot from the surface, allows a fast growth rate thanks to the presence of preferential nucleation sites at the step edges. A 100 nm InAlAs metamorphic layer with In content 50% directly deposited on the GaAs substrate is already almost fully relaxed with a very flat surface. The quantum dots emit at the 1.3 μm telecom O-band with fine structure splitting as low as 16 μeV, thus making them suitable as photon sources in quantum communication networks using entangled photons.

1.
A.
Orieux
,
M. A. M.
Versteegh
,
K. D.
Jöns
, and
S.
Ducci
, “
Semiconductor devices for entangled photon pair generation: A review
,”
Rep. Prog. Phys.
80
,
076001
(
2017
).
2.
D.
Huber
,
M.
Reindl
,
J.
Aberl
,
A.
Rastelli
, and
R.
Trotta
, “
Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: A review
,”
J. Opt.
20
,
073002
(
2018
).
3.
J.
Skiba-Szymanska
,
R. M.
Stevenson
,
C.
Varnava
,
M.
Felle
,
J.
Huwer
,
T.
Müller
,
A. J.
Bennett
,
J. P.
Lee
,
I.
Farrer
,
A. B.
Krysa
,
P.
Spencer
,
L. E.
Goff
,
D.
Ritchie
,
J.
Heffernan
, and
A. J.
Shields
, “
Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths
,”
Phys. Rev. Appl.
8
,
014013
(
2017
).
4.
D.
Huber
,
M.
Reindl
,
S. F. C.
da Silva
,
C.
Schimpf
,
J.
Martín-Sánchez
,
H.
Huang
,
G.
Piredda
,
J.
Edlinger
,
A.
Rastelli
, and
R.
Trotta
, “
Strain-tunable GaAs quantum dot: A nearly dephasing-free source of entangled photon pairs on demand
,”
Phys. Rev. Lett.
121
,
033902
(
2018
).
5.
F. B.
Basset
,
S.
Bietti
,
M.
Reindl
,
L.
Esposito
,
A.
Fedorov
,
D.
Huber
,
A.
Rastelli
,
E.
Bonera
,
R.
Trotta
, and
S.
Sanguinetti
, “
High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy
,”
Nano Lett.
18
,
505
512
(
2018
).
6.
D.
Gammon
,
E. S.
Snow
,
B. V.
Shanabrook
,
D. S.
Katzer
, and
D.
Park
, “
Fine structure splitting in the optical spectra of single GaAs quantum dots
,”
Phys. Rev. Lett.
76
,
3005
3008
(
1996
).
7.
M.
Bayer
,
G.
Ortner
,
O.
Stern
,
A.
Kuther
,
A. A.
Gorbunovand
,
A.
Forchel
,
P.
Hawrylak
,
S.
Fafard
,
K.
Hinzer
,
T. L.
Reinecke
,
S. N.
Walck
,
J. P.
Reithmaier
,
F.
Klopf
, and
F.
Schäfer
, “
Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots
,”
Phys. Rev. B
65
,
195315
(
2002
).
8.
R.
Singh
and
G.
Bester
, “
Nanowire quantum dots as an ideal source of entangled photon pairs
,”
Phys. Rev. Lett.
103
,
063601
(
2009
).
9.
T.
Mano
,
M.
Abbarchi
,
T.
Kuroda
,
B.
McSkimming
,
A.
Ohtake
,
K.
Mitsuishi
, and
K.
Sakoda
, “
Self-assembly of symmetric GaAs quantum dots on (111)A substrates: Suppression of fine-structure splitting
,”
Appl. Phys. Express
3
,
065203
(
2010
).
10.
T.
Kuroda
,
T.
Mano
,
N.
Ha
,
H.
Nakajima
,
H.
Kumano
,
B.
Urbaszek
,
M.
Jo
,
M.
Abbarchi
,
Y.
Sakuma
,
K.
Sakoda
,
I.
Suemune
,
X.
Marie
, and
T.
Amand
, “
Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell's inequality without spectral and temporal filtering
,”
Phys. Rev. B
88
,
041306(R)
(
2013
).
11.
J. X.
Chen
,
A.
Markus
,
A.
Fiore
,
U.
Oesterle
,
R. P.
Stanley
,
J. F.
Carlin
,
R.
Houdré
,
M.
Ilegems
,
L.
Lazzarini
,
L.
Nasi
,
M. T.
Todaro
,
E.
Piscopiello
,
R.
Cingolani
,
M.
Catalano
,
J.
Katcki
, and
J.
Ratajczak
, “
Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications
,”
J. Appl. Phys.
91
,
6710
6716
(
2002
).
12.
H.
Yamaguchi
,
J. G.
Belk
,
X. M.
Zhang
,
J. L.
Sudijono
,
M. R.
Fahy
,
T. S.
Jones
,
D. W.
Pashley
, and
B. A.
Joyce
, “
Atomic-scale imaging of strain relaxation via misfit dislocations in highly mismatched semiconductor heteroepitaxy: InAs/GaAs(111)A
,”
Phys. Rev. B
55
,
1337
1340
(
1997
).
13.
H.
Wen
,
Z. M.
Wang
,
J. L.
Shultz
,
B. L.
Liang
, and
G. J.
Salamo
, “
Growth and characterization of InAs epitaxial layer on GaAs(111)B
,”
Phys. Rev. B
70
,
205307
(
2004
).
14.
C. D.
Yerino
,
P. J.
Simmonds
,
B.
Liang
,
D.
Jung
,
C.
Schneider
,
S.
Unsleber
,
M.
Vo
,
D. L.
Huffaker
,
S.
Höfling
,
M.
Kamp
, and
M. L.
Lee
, “
Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting
,”
Appl. Phys. Lett.
105
,
251901
(
2014
).
15.
C. F.
Schuck
,
R. A.
McCown
,
A.
Hush
,
A.
Mello
,
S.
Roy
,
J. W.
Spinuzzi
,
B.
Liang
,
D. L.
Huffaker
, and
P. J.
Simmonds
, “
Self-assembly of (111)-oriented tensile-strained quantum dots by molecular beam epitaxy
,”
J. Vac. Sci. Technol. B
36
,
031803
(
2018
).
16.
C. F.
Schuck
,
S. K.
Roy
,
T.
Garrett
,
Q.
Yuan
,
Y.
Wang
,
C. I.
Cabrera
,
K. A.
Grossklaus
,
T. E.
Vandervelde
,
B.
Liang
, and
P. J.
Simmonds
, “
Anomalous Stranski-Krastanov growth of (111)-oriented quantum dots with tunable wetting layer thickness
,”
Sci. Rep.
9
,
18179
(
2019
).
17.
A.
Tuktamyshev
,
A.
Fedorov
,
S.
Bietti
,
S.
Tsukamoto
, and
S.
Sanguinetti
, “
Temperature activated dimensionality crossover in the nucleation of quantum dots by droplet epitaxy on GaAs(111)A vicinal substrates
,”
Sci. Rep.
9
,
14520
(
2019
).
18.
S.
Bietti
,
F. B.
Basset
,
A.
Tuktamyshev
,
E.
Bonera
,
A.
Fedorov
, and
S.
Sanguinetti
, “
High–temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots
,”
Sci. Rep.
10
,
6532
(
2020
).
19.
S.
Sanguinetti
,
S.
Bietti
, and
N.
Koguchi
, “
Droplet epitaxy of nanostructures
,” in
Molecular Beam Epitaxy: From Research to Mass Production
, 2nd ed. (
Elsevier
,
2018
), Chap. 13, pp.
293
314
.
20.
M.
Gurioli
,
Z.
Wang
,
A.
Rastelli
,
T.
Kuroda
, and
S.
Sanguinetti
, “
Droplet epitaxy of semiconductor nanostructures for quantum photonic devices
,”
Nat. Mater.
18
,
799
810
(
2019
).
21.
N.
Ha
,
T.
Mano
,
T.
Kuroda
,
K.
Mitsuishi
,
A.
Ohtake
,
A.
Castellano
,
S.
Sanguinetti
,
T.
Noda
,
Y.
Sakuma
, and
K.
Sakoda
, “
Droplet epitaxy growth of telecom InAs quantum dots on metamorphic InAlAs/GaAs(111)A
,”
Jpn. J. Appl. Phys., Part 1
54
,
04DH07
(
2015
).
22.
N.
Ha
,
T.
Mano
,
S.
Dubos
,
T.
Kuroda
,
Y.
Sakuma
, and
K.
Sakoda
, “
Single photon emission from droplet epitaxial quantum dots in the standard telecom window around a wavelength of 1.55 μm
,”
Appl. Phys. Express
13
,
025002
(
2020
).
23.
L.
Esposito
,
S.
Bietti
,
A.
Fedorov
,
R.
Nötzel
, and
S.
Sanguinetti
, “
Ehrlich-Schwöbel effect on the growth dynamics of GaAs(111)A surfaces
,”
Phys. Rev. Mater.
1
,
024602
(
2017
).
24.
F.
Herzog
,
M.
Bichler
,
G.
Koblmüller
,
S.
Prabhu-Gaunkar
,
W.
Zhou
, and
M.
Grayson
, “
Optimization of AlAs/AlGaAs quantum well heterostructures on on-axis and misoriented GaAs(111)B
,”
Appl. Phys. Lett.
100
,
192106
(
2012
).
25.
T.
Mano
,
K.
Mitsuishi
,
N.
Ha
,
A.
Ohtake
,
A.
Castellano
,
S.
Sanguinetti
,
T.
Noda
,
Y.
Sakuma
,
T.
Kuroda
, and
K.
Sakoda
, “
Growth of metamorphic InGaAs on GaAs(111)A: Counteracting lattice mismatch by inserting a thin InAs interlayer
,”
Cryst. Growth Des.
16
,
5412
5417
(
2016
).
26.
W.-H.
Chang
,
W. Y.
Chen
,
T. M.
Hsu
,
N.-T.
Yeh
, and
J.-I.
Chyi
, “
Hole emission processes in InAs/GaAs self-assembled quantum dots
,”
Phys. Rev. B
66
,
195337
(
2002
).
27.
M.
Souaf
,
M.
Baira
,
O.
Nasr
,
M. H. H.
Alouane
,
H.
Maaref
,
L.
Sfaxi
, and
B.
Ilahi
, “
Investigation of the InAs/GaAs quantum dots' size: Dependence on the strain reducing layer's position
,”
Materials
8
,
4699
4709
(
2015
).
28.
L.
Seravalli
,
M.
Minelli
,
P.
Frigeri
,
S.
Franchi
,
G.
Guizzetti
,
M.
Patrini
,
T.
Ciabattoni
, and
M.
Geddo
, “
Quantum dot strain engineering of InAs/InGaAs nanostructures
,”
J. Appl. Phys.
101
,
024313
(
2007
).
29.
M.
Paul
,
F.
Olbrich
,
J.
Höschele
,
S.
Schreier
,
J.
Kettler
,
S.
Portalupi
,
M.
Jetter
, and
P.
Michler
, “
Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers
,”
Appl. Phys. Lett.
111
,
033102
(
2017
).
30.
K. D.
Zeuner
,
K. D.
Jöns
,
L.
Schweickert
,
C. R.
Hedlund
,
C.
Nuñez-Lobato
,
T.
Lettner
,
K.
Wang
,
S.
Gyger
,
E.
Schöll
,
S.
Steinhauer
,
M.
Hammar
, and
V.
Zwiller
, “
On–demand generation of entangled photon pairs in the telecom C–band for fiber–based quantum networks
,” e-print arXiv:1912.04782v1 (
2019
).
31.
A.
Ohtake
,
M.
Ozeki
, and
J.
Nakamura
, “
Strain relaxation in InAs/GaAs(111)A heteroepitaxy
,”
Phys. Rev. Lett.
84
,
4665
4668
(
2000
).
32.
A.
Ohtake
,
T.
Mano
, and
Y.
Sakuma
, “
Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates
,”
Sci. Rep.
10
,
4606
(
2020
).
33.
A.
Tuktamyshev
,
A.
Fedorov
,
S.
Bietti
,
S.
Tsukamoto
,
R.
Bergamaschini
,
F.
Montalenti
, and
S.
Sanguinetti
, “
Reentrant behavior of the density vs. temperature of indium islands on GaAs(111)A
,”
Nanomaterials
10
,
1512
(
2020
).
34.
S.
Bietti
,
J.
Bocquel
,
S.
Adorno
,
T.
Mano
,
J. G.
Keizer
,
P. M.
Koenraad
, and
S.
Sanguinetti
, “
Precise shape engineering of epitaxial quantum dots by growth kinetics
,”
Phys. Rev. B
92
,
075425
(
2015
).
35.
M.
Jo
,
T.
Mano
,
M.
Abbarchi
,
T.
Kuroda
,
Y.
Sakuma
, and
K.
Sakoda
, “
Self-limiting growth of hexagonal and triangular quantum dots on (111)A
,”
Cryst. Growth Des.
12
,
1411
1415
(
2012
).
36.
S.
Kako
,
C.
Santori
,
K.
Hoshino
,
S.
Gözinger
,
Y.
Yamamoto
, and
Y.
Arakawa
, “
A gallium nitride single-photon source operating at 200 K
,”
Nat. Mater.
5
,
887
892
(
2006
).
37.
M.
Abbarchi
,
C.
Mastrandrea
,
T.
Kuroda
,
T.
Mano
,
A.
Vinattieri
,
K.
Sakoda
, and
M.
Gurioli
, “
Poissonian statistics of excitonic complexes in quantum dots
,”
J. Appl. Phys.
106
,
053504
(
2009
).
38.
K.
Kowalik
,
O.
Krebs
,
A.
Lemaître
,
S.
Laurent
,
P.
Senellart
,
P.
Voisin
, and
J. A.
Gaj
, “
Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots
,”
Appl. Phys. Lett.
86
,
041907
(
2005
).
39.
R.
Trotta
,
E.
Zallo
,
C.
Ortix
,
P.
Atkinson
,
J. D.
Plumhof
,
J.
van den Brink
,
A.
Rastelli
, and
O. G.
Schmidt
, “
Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry
,”
Phys. Rev. Lett.
109
,
147401
(
2012
).
40.
T.
Müller
,
J.
Skiba-Szymanska
,
A. B.
Krysa
,
J.
Huwer
,
M.
Felle
,
M.
Anderson
,
R. M.
Stevenson
,
J.
Heffernan
,
D. A.
Ritchie
, and
A. J.
Shields
, “
A quantum light-emitting diode for the standard telecom window around 1550 nm
,”
Nat. Commun.
9
,
862
(
2018
).

Supplementary Material

You do not currently have access to this content.