We present self-assembly of InAs/InAlAs quantum dots by the droplet epitaxy technique on vicinal GaAs(111)A substrates. The small miscut angle, while maintaining the symmetries imposed on the quantum dot from the surface, allows a fast growth rate thanks to the presence of preferential nucleation sites at the step edges. A 100 nm InAlAs metamorphic layer with In content 50% directly deposited on the GaAs substrate is already almost fully relaxed with a very flat surface. The quantum dots emit at the 1.3 μm telecom O-band with fine structure splitting as low as 16 μeV, thus making them suitable as photon sources in quantum communication networks using entangled photons.
References
1.
A.
Orieux
, M. A. M.
Versteegh
, K. D.
Jöns
, and S.
Ducci
, “Semiconductor devices for entangled photon pair generation: A review
,” Rep. Prog. Phys.
80
, 076001
(2017
).2.
D.
Huber
, M.
Reindl
, J.
Aberl
, A.
Rastelli
, and R.
Trotta
, “Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: A review
,” J. Opt.
20
, 073002
(2018
).3.
J.
Skiba-Szymanska
, R. M.
Stevenson
, C.
Varnava
, M.
Felle
, J.
Huwer
, T.
Müller
, A. J.
Bennett
, J. P.
Lee
, I.
Farrer
, A. B.
Krysa
, P.
Spencer
, L. E.
Goff
, D.
Ritchie
, J.
Heffernan
, and A. J.
Shields
, “Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths
,” Phys. Rev. Appl.
8
, 014013
(2017
).4.
D.
Huber
, M.
Reindl
, S. F. C.
da Silva
, C.
Schimpf
, J.
Martín-Sánchez
, H.
Huang
, G.
Piredda
, J.
Edlinger
, A.
Rastelli
, and R.
Trotta
, “Strain-tunable GaAs quantum dot: A nearly dephasing-free source of entangled photon pairs on demand
,” Phys. Rev. Lett.
121
, 033902
(2018
).5.
F. B.
Basset
, S.
Bietti
, M.
Reindl
, L.
Esposito
, A.
Fedorov
, D.
Huber
, A.
Rastelli
, E.
Bonera
, R.
Trotta
, and S.
Sanguinetti
, “High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy
,” Nano Lett.
18
, 505
–512
(2018
).6.
D.
Gammon
, E. S.
Snow
, B. V.
Shanabrook
, D. S.
Katzer
, and D.
Park
, “Fine structure splitting in the optical spectra of single GaAs quantum dots
,” Phys. Rev. Lett.
76
, 3005
–3008
(1996
).7.
M.
Bayer
, G.
Ortner
, O.
Stern
, A.
Kuther
, A. A.
Gorbunovand
, A.
Forchel
, P.
Hawrylak
, S.
Fafard
, K.
Hinzer
, T. L.
Reinecke
, S. N.
Walck
, J. P.
Reithmaier
, F.
Klopf
, and F.
Schäfer
, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots
,” Phys. Rev. B
65
, 195315
(2002
).8.
R.
Singh
and G.
Bester
, “Nanowire quantum dots as an ideal source of entangled photon pairs
,” Phys. Rev. Lett.
103
, 063601
(2009
).9.
T.
Mano
, M.
Abbarchi
, T.
Kuroda
, B.
McSkimming
, A.
Ohtake
, K.
Mitsuishi
, and K.
Sakoda
, “Self-assembly of symmetric GaAs quantum dots on (111)A substrates: Suppression of fine-structure splitting
,” Appl. Phys. Express
3
, 065203
(2010
).10.
T.
Kuroda
, T.
Mano
, N.
Ha
, H.
Nakajima
, H.
Kumano
, B.
Urbaszek
, M.
Jo
, M.
Abbarchi
, Y.
Sakuma
, K.
Sakoda
, I.
Suemune
, X.
Marie
, and T.
Amand
, “Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell's inequality without spectral and temporal filtering
,” Phys. Rev. B
88
, 041306(R)
(2013
).11.
J. X.
Chen
, A.
Markus
, A.
Fiore
, U.
Oesterle
, R. P.
Stanley
, J. F.
Carlin
, R.
Houdré
, M.
Ilegems
, L.
Lazzarini
, L.
Nasi
, M. T.
Todaro
, E.
Piscopiello
, R.
Cingolani
, M.
Catalano
, J.
Katcki
, and J.
Ratajczak
, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications
,” J. Appl. Phys.
91
, 6710
–6716
(2002
).12.
H.
Yamaguchi
, J. G.
Belk
, X. M.
Zhang
, J. L.
Sudijono
, M. R.
Fahy
, T. S.
Jones
, D. W.
Pashley
, and B. A.
Joyce
, “Atomic-scale imaging of strain relaxation via misfit dislocations in highly mismatched semiconductor heteroepitaxy: InAs/GaAs(111)A
,” Phys. Rev. B
55
, 1337
–1340
(1997
).13.
H.
Wen
, Z. M.
Wang
, J. L.
Shultz
, B. L.
Liang
, and G. J.
Salamo
, “Growth and characterization of InAs epitaxial layer on GaAs(111)B
,” Phys. Rev. B
70
, 205307
(2004
).14.
C. D.
Yerino
, P. J.
Simmonds
, B.
Liang
, D.
Jung
, C.
Schneider
, S.
Unsleber
, M.
Vo
, D. L.
Huffaker
, S.
Höfling
, M.
Kamp
, and M. L.
Lee
, “Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting
,” Appl. Phys. Lett.
105
, 251901
(2014
).15.
C. F.
Schuck
, R. A.
McCown
, A.
Hush
, A.
Mello
, S.
Roy
, J. W.
Spinuzzi
, B.
Liang
, D. L.
Huffaker
, and P. J.
Simmonds
, “Self-assembly of (111)-oriented tensile-strained quantum dots by molecular beam epitaxy
,” J. Vac. Sci. Technol. B
36
, 031803
(2018
).16.
C. F.
Schuck
, S. K.
Roy
, T.
Garrett
, Q.
Yuan
, Y.
Wang
, C. I.
Cabrera
, K. A.
Grossklaus
, T. E.
Vandervelde
, B.
Liang
, and P. J.
Simmonds
, “Anomalous Stranski-Krastanov growth of (111)-oriented quantum dots with tunable wetting layer thickness
,” Sci. Rep.
9
, 18179
(2019
).17.
A.
Tuktamyshev
, A.
Fedorov
, S.
Bietti
, S.
Tsukamoto
, and S.
Sanguinetti
, “Temperature activated dimensionality crossover in the nucleation of quantum dots by droplet epitaxy on GaAs(111)A vicinal substrates
,” Sci. Rep.
9
, 14520
(2019
).18.
S.
Bietti
, F. B.
Basset
, A.
Tuktamyshev
, E.
Bonera
, A.
Fedorov
, and S.
Sanguinetti
, “High–temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots
,” Sci. Rep.
10
, 6532
(2020
).19.
S.
Sanguinetti
, S.
Bietti
, and N.
Koguchi
, “Droplet epitaxy of nanostructures
,” in Molecular Beam Epitaxy: From Research to Mass Production
, 2nd ed. (Elsevier
, 2018
), Chap. 13, pp. 293
–314
.20.
M.
Gurioli
, Z.
Wang
, A.
Rastelli
, T.
Kuroda
, and S.
Sanguinetti
, “Droplet epitaxy of semiconductor nanostructures for quantum photonic devices
,” Nat. Mater.
18
, 799
–810
(2019
).21.
N.
Ha
, T.
Mano
, T.
Kuroda
, K.
Mitsuishi
, A.
Ohtake
, A.
Castellano
, S.
Sanguinetti
, T.
Noda
, Y.
Sakuma
, and K.
Sakoda
, “Droplet epitaxy growth of telecom InAs quantum dots on metamorphic InAlAs/GaAs(111)A
,” Jpn. J. Appl. Phys., Part 1
54
, 04DH07
(2015
).22.
N.
Ha
, T.
Mano
, S.
Dubos
, T.
Kuroda
, Y.
Sakuma
, and K.
Sakoda
, “Single photon emission from droplet epitaxial quantum dots in the standard telecom window around a wavelength of 1.55 μm
,” Appl. Phys. Express
13
, 025002
(2020
).23.
L.
Esposito
, S.
Bietti
, A.
Fedorov
, R.
Nötzel
, and S.
Sanguinetti
, “Ehrlich-Schwöbel effect on the growth dynamics of GaAs(111)A surfaces
,” Phys. Rev. Mater.
1
, 024602
(2017
).24.
F.
Herzog
, M.
Bichler
, G.
Koblmüller
, S.
Prabhu-Gaunkar
, W.
Zhou
, and M.
Grayson
, “Optimization of AlAs/AlGaAs quantum well heterostructures on on-axis and misoriented GaAs(111)B
,” Appl. Phys. Lett.
100
, 192106
(2012
).25.
T.
Mano
, K.
Mitsuishi
, N.
Ha
, A.
Ohtake
, A.
Castellano
, S.
Sanguinetti
, T.
Noda
, Y.
Sakuma
, T.
Kuroda
, and K.
Sakoda
, “Growth of metamorphic InGaAs on GaAs(111)A: Counteracting lattice mismatch by inserting a thin InAs interlayer
,” Cryst. Growth Des.
16
, 5412
–5417
(2016
).26.
W.-H.
Chang
, W. Y.
Chen
, T. M.
Hsu
, N.-T.
Yeh
, and J.-I.
Chyi
, “Hole emission processes in InAs/GaAs self-assembled quantum dots
,” Phys. Rev. B
66
, 195337
(2002
).27.
M.
Souaf
, M.
Baira
, O.
Nasr
, M. H. H.
Alouane
, H.
Maaref
, L.
Sfaxi
, and B.
Ilahi
, “Investigation of the InAs/GaAs quantum dots' size: Dependence on the strain reducing layer's position
,” Materials
8
, 4699
–4709
(2015
).28.
L.
Seravalli
, M.
Minelli
, P.
Frigeri
, S.
Franchi
, G.
Guizzetti
, M.
Patrini
, T.
Ciabattoni
, and M.
Geddo
, “Quantum dot strain engineering of InAs/InGaAs nanostructures
,” J. Appl. Phys.
101
, 024313
(2007
).29.
M.
Paul
, F.
Olbrich
, J.
Höschele
, S.
Schreier
, J.
Kettler
, S.
Portalupi
, M.
Jetter
, and P.
Michler
, “Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers
,” Appl. Phys. Lett.
111
, 033102
(2017
).30.
K. D.
Zeuner
, K. D.
Jöns
, L.
Schweickert
, C. R.
Hedlund
, C.
Nuñez-Lobato
, T.
Lettner
, K.
Wang
, S.
Gyger
, E.
Schöll
, S.
Steinhauer
, M.
Hammar
, and V.
Zwiller
, “On–demand generation of entangled photon pairs in the telecom C–band for fiber–based quantum networks
,” e-print arXiv:1912.04782v1 (2019
).31.
A.
Ohtake
, M.
Ozeki
, and J.
Nakamura
, “Strain relaxation in InAs/GaAs(111)A heteroepitaxy
,” Phys. Rev. Lett.
84
, 4665
–4668
(2000
).32.
A.
Ohtake
, T.
Mano
, and Y.
Sakuma
, “Strain relaxation in InAs heteroepitaxy on lattice-mismatched substrates
,” Sci. Rep.
10
, 4606
(2020
).33.
A.
Tuktamyshev
, A.
Fedorov
, S.
Bietti
, S.
Tsukamoto
, R.
Bergamaschini
, F.
Montalenti
, and S.
Sanguinetti
, “Reentrant behavior of the density vs. temperature of indium islands on GaAs(111)A
,” Nanomaterials
10
, 1512
(2020
).34.
S.
Bietti
, J.
Bocquel
, S.
Adorno
, T.
Mano
, J. G.
Keizer
, P. M.
Koenraad
, and S.
Sanguinetti
, “Precise shape engineering of epitaxial quantum dots by growth kinetics
,” Phys. Rev. B
92
, 075425
(2015
).35.
M.
Jo
, T.
Mano
, M.
Abbarchi
, T.
Kuroda
, Y.
Sakuma
, and K.
Sakoda
, “Self-limiting growth of hexagonal and triangular quantum dots on (111)A
,” Cryst. Growth Des.
12
, 1411
–1415
(2012
).36.
S.
Kako
, C.
Santori
, K.
Hoshino
, S.
Gözinger
, Y.
Yamamoto
, and Y.
Arakawa
, “A gallium nitride single-photon source operating at 200 K
,” Nat. Mater.
5
, 887
–892
(2006
).37.
M.
Abbarchi
, C.
Mastrandrea
, T.
Kuroda
, T.
Mano
, A.
Vinattieri
, K.
Sakoda
, and M.
Gurioli
, “Poissonian statistics of excitonic complexes in quantum dots
,” J. Appl. Phys.
106
, 053504
(2009
).38.
K.
Kowalik
, O.
Krebs
, A.
Lemaître
, S.
Laurent
, P.
Senellart
, P.
Voisin
, and J. A.
Gaj
, “Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots
,” Appl. Phys. Lett.
86
, 041907
(2005
).39.
R.
Trotta
, E.
Zallo
, C.
Ortix
, P.
Atkinson
, J. D.
Plumhof
, J.
van den Brink
, A.
Rastelli
, and O. G.
Schmidt
, “Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry
,” Phys. Rev. Lett.
109
, 147401
(2012
).40.
T.
Müller
, J.
Skiba-Szymanska
, A. B.
Krysa
, J.
Huwer
, M.
Felle
, M.
Anderson
, R. M.
Stevenson
, J.
Heffernan
, D. A.
Ritchie
, and A. J.
Shields
, “A quantum light-emitting diode for the standard telecom window around 1550 nm
,” Nat. Commun.
9
, 862
(2018
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.