We report on the analysis of electroabsorption in thin GaAs/Al0.3Ga0.7As nanophotonic waveguides with an embedded pin junction. By measuring the transmission through waveguides of different lengths, we derive the propagation loss as a function of electric field, wavelength, and temperature. The results are in good agreement with the Franz–Keldysh model of electroabsorption extending over 200 meV below the GaAs bandgap, i.e., in the wavelength range of 910–970 nm. We find a pronounced residual absorption in forward bias, which we attribute to Fermi-level pinning at the waveguide surface, producing over 20 dB/mm loss at room temperature. These results are essential for understanding the origin of loss in nanophotonic devices operating in the emission range of self-assembled InAs semiconductor quantum dots toward the realization of scalable quantum photonic integrated circuits.

1.
J.
O'Brien
,
A.
Furusawa
, and
J.
Vučković
, “
Photonic quantum technologies
,”
Nat. Photonics
3
,
687
695
(
2009
).
2.
S.
Hepp
,
M.
Jetter
,
S. L.
Portalupi
, and
P.
Michler
, “
Semiconductor quantum dots for integrated quantum photonics
,”
Adv. Quantum Technol.
2
,
1900020
(
2019
).
3.
P.
Lodahl
, “
Quantum-dot based photonic quantum networks
,”
Quantum Sci. Technol.
3
,
013001
(
2018
).
4.
R.
Uppu
,
H. T.
Eriksen
,
H.
Thyrrestrup
,
A. D.
Uğurlu
,
Y.
Wang
,
S.
Scholz
,
A. D.
Wieck
,
A.
Ludwig
,
M. C.
Löbl
,
R. J.
Warburton
 et al., “
On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source
,”
Nat. Commun.
11
,
3782
(
2020
).
5.
R.
Uppu
,
F. T.
Pedersen
,
Y.
Wang
,
C. T.
Olesen
,
C.
Papon
,
X.
Zhou
,
L.
Midolo
,
S.
Scholz
,
A. D.
Wieck
,
A.
Ludwig
, and
P.
Lodhal
, “
Scalable integrated single-photon source
,”
Sci. Adv.
6
,
eabc8268
(
2020
).
6.
H.
Wang
,
Z.-C.
Duan
,
Y.-H.
Li
,
S.
Chen
,
J.-P.
Li
,
Y.-M.
He
,
M.-C.
Chen
,
Y.
He
,
X.
Ding
,
C.-Z.
Peng
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
C.-Y.
Lu
, and
J.-W.
Pan
, “
Near-transform-limited single photons from an efficient solid-state quantum emitter
,”
Phys. Rev. Lett.
116
,
213601
(
2016
).
7.
F. T.
Pedersen
,
Y.
Wang
,
C. T.
Olesen
,
S.
Scholz
,
A. D.
Wieck
,
A.
Ludwig
,
M. C.
Löbl
,
R. J.
Warburton
,
L.
Midolo
,
R.
Uppu
, and
P.
Lodahl
, “
Near transform-limited quantum dot linewidths in a broadband photonic crystal waveguide
,”
ACS Photonics
7
,
2343
2349
(
2020
).
8.
H.
Ollivier
,
I.
Maillette de Buy Wenniger
,
S.
Thomas
,
S. C.
Wein
,
A.
Harouri
,
G.
Coppola
,
P.
Hilaire
,
C.
Millet
,
A.
Lemaître
,
I.
Sagnes
,
O.
Krebs
,
L.
Lanco
,
J. C.
Loredo
,
C.
Antón
,
N.
Somaschi
, and
P.
Senellart
, “
Reproducibility of high-performance quantum dot single-photon sources
,”
ACS Photonics
7
,
1050
1059
(
2020
).
9.
A.
Laucht
,
F.
Hofbauer
,
N.
Hauke
,
J.
Angele
,
S.
Stobbe
,
M.
Kaniber
,
G.
Böhm
,
P.
Lodahl
,
M.
Amann
, and
J.
Finley
, “
Electrical control of spontaneous emission and strong coupling for a single quantum dot
,”
New J. Phys.
11
,
023034
(
2009
).
10.
E.
Rosencher
and
B.
Vinter
,
Optoelectronics
(
Cambridge University Press
,
2002
).
11.
D.
Najer
,
I.
Söllner
,
P.
Sekatski
,
V.
Dolique
,
M. C.
Löbl
,
D.
Riedel
,
R.
Schott
,
S.
Starosielec
,
S. R.
Valentin
,
A. D.
Wieck
 et al., “
A gated quantum dot strongly coupled to an optical microcavity
,”
Nature
575
,
622
627
(
2019
).
12.
L.
Midolo
,
S. L.
Hansen
,
W.
Zhang
,
C.
Papon
,
R.
Schott
,
A.
Ludwig
,
A. D.
Wieck
,
P.
Lodahl
, and
S.
Stobbe
, “
Electro-optic routing of photons from a single quantum dot in photonic integrated circuits
,”
Opt. Express
25
,
33514
33526
(
2017
).
13.
A. J.
Bennett
,
R. B.
Patel
,
J.
Skiba-Szymanska
,
C. A.
Nicoll
,
I.
Farrer
,
D. A.
Ritchie
, and
A. J.
Shields
, “
Giant Stark effect in the emission of single semiconductor quantum dots
,”
Appl. Phys. Lett.
97
,
031104
(
2010
).
14.
I.-H.
Tan
,
G.
Snider
,
L.
Chang
, and
E.
Hu
, “
A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh
,”
J. Appl. Phys.
68
,
4071
4076
(
1990
).
15.
D.
Colleoni
,
G.
Miceli
, and
A.
Pasquarello
, “
Fermi-level pinning through defects at GaAs/oxide interfaces: A density functional study
,”
Phys. Rev. B
92
,
125304
(
2015
).
16.
S.
Offsey
,
J.
Woodall
,
A.
Warren
,
P.
Kirchner
,
T.
Chappell
, and
G.
Pettit
, “
Unpinned (100) GaAs surfaces in air using photochemistry
,”
Appl. Phys. Lett.
48
,
475
477
(
1986
).
17.
W.
Spicer
,
P.
Chye
,
P.
Skeath
,
C. Y.
Su
, and
I.
Lindau
, “
New and unified model for Schottky barrier and III–V insulator interface states formation
,”
J. Vac. Sci. Technol.
16
,
1422
1433
(
1979
).
18.
J.
Callaway
, “
Optical absorption in an electric field
,”
Phys. Rev.
134
,
A998
(
1964
).
19.
G.
Stillman
,
C.
Wolfe
,
C.
Bozler
, and
J.
Rossi
, “
Electroabsorption in GaAs and its application to waveguide detectors and modulators
,”
Appl. Phys. Lett.
28
,
544
546
(
1976
).
20.
T.
Visser
,
H.
Blok
,
B.
Demeulenaere
, and
D.
Lenstra
, “
Confinement factors and gain in optical amplifiers
,”
IEEE J. Quantum Electron.
33
,
1763
1766
(
1997
).
21.
L.
Midolo
,
T.
Pregnolato
,
G.
Kiršanskė
, and
S.
Stobbe
, “
Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics
,”
Nanotechnology
26
,
484002
(
2015
).
22.
X.
Zhou
,
I.
Kulkova
,
T.
Lund-Hansen
,
S. L.
Hansen
,
P.
Lodahl
, and
L.
Midolo
, “
High-efficiency shallow-etched grating on GaAs membranes for quantum photonic applications
,”
Appl. Phys. Lett.
113
,
251103
(
2018
).
23.
C.
Papon
,
X.
Zhou
,
H.
Thyrrestrup
,
Z.
Liu
,
S.
Stobbe
,
R.
Schott
,
A. D.
Wieck
,
A.
Ludwig
,
P.
Lodahl
, and
L.
Midolo
, “
Nanomechanical single-photon routing
,”
Optica
6
,
524
530
(
2019
).
24.
H.
Casey
, Jr.
,
D.
Sell
, and
K.
Wecht
, “
Concentration dependence of the absorption coefficient for n- and p- type GaAs between 1.3 and 1.6 eV
,”
J. Appl. Phys.
46
,
250
257
(
1975
).
25.
F.
Payne
and
J.
Lacey
, “
A theoretical analysis of scattering loss from planar optical waveguides
,”
Opt. Quantum Electron.
26
,
977
986
(
1994
).
26.
B.
Guha
,
F.
Marsault
,
F.
Cadiz
,
L.
Morgenroth
,
V.
Ulin
,
V.
Berkovitz
,
A.
Lemaître
,
C.
Gomez
,
A.
Amo
,
S.
Combrié
 et al., “
Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106
,”
Optica
4
,
218
221
(
2017
).
27.
K.
Kuruma
,
Y.
Ota
,
M.
Kakuda
,
S.
Iwamoto
, and
Y.
Arakawa
, “
Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots
,”
APL Photonics
5
,
046106
(
2020
).
28.
I. P.
González
,
L. E.
Munoz Camunez
,
A. G.
Taboada
,
C.
Robles Urdiales
,
J. M.
Ripalda Cobian
, and
P. A.
Postigo Resa
, “
Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching
,”
J. Vac. Sci. Technol. B
32
,
011204
(
2014
).
29.
R.
Benevides
,
M.
Ménard
,
G. S.
Wiederhecker
, and
T. P. M.
Alegre
, “
Ar/Cl2 etching of GaAs optomechanical microdisks fabricated with positive electroresist
,”
Opt. Mater. Express
10
,
57
67
(
2020
).
30.
X.
Zhou
,
R.
Uppu
,
Z.
Liu
,
C.
Papon
,
R.
Schott
,
A. D.
Wieck
,
A.
Ludwig
,
P.
Lodahl
, and
L.
Midolo
, “
On-chip nanomechanical filtering of quantum-dot single-photon sources
,”
Laser Photonics Rev.
14
,
1900404
(
2020
).
You do not currently have access to this content.