We present a synthesis scheme to mold periodic nonradiative field patterns in transmission using the recent concept of metagratings (MGs). To this end, we utilize our previously developed analytical model to analyze the interaction of an incoming plane wave with these sparse periodic arrangements of polarizable particles (meta-atoms). As the model reliably predicts coupling to all scattered Floquet–Bloch modes, both propagating and evanescent, desired reactive near-field profiles with deep subwavelength features can be generated. This approach forms an appealing alternative to previously proposed near-field plates based on metasurfaces, where abstract homogenization introduces uncertainties regarding utilization of highly evanescent spectrum, and meta-atom realization incurs full-wave optimization. In contrast, the outlined MG-based methodology, verified via full-wave simulations, directly yields fabrication-ready printed-circuit-board configurations, enabling versatile control of reactive near fields with no interfering radiative components, with potential uses in sensing, selective microwave heating, and wireless power transfer.

1.
E.
Synge
,
London Edinburgh Dublin Philos. Mag. J. Sci.
6
,
356
(
1928
).
2.
E.
Ash
and
G.
Nicholls
,
Nature
237
,
510
(
1972
).
3.
D. W.
Pohl
,
W.
Denk
, and
M.
Lanz
,
Appl. Phys. Lett.
44
,
651
(
1984
).
4.
E.
Betzig
and
J. K.
Trautman
,
Science
257
,
189
(
1992
).
5.
S. M.
Anlage
,
V. V.
Talanov
, and
A. R.
Schwartz
, in
Scanning Probe Microscopy
(
Springer
,
2007
), pp.
215
253
.
6.
7.
N.
Fang
,
H.
Lee
,
C.
Sun
, and
X.
Zhang
,
Science
308
,
534
(
2005
).
8.
M. F.
Imani
and
A.
Grbic
,
J. Appl. Phys.
117
,
184903
(
2015
).
9.
S. J.
McNab
and
R. J.
Blaikie
,
Appl. Opt.
39
,
20
(
2000
).
10.
R. J.
Blaikie
and
S. J.
McNab
,
Appl. Opt.
40
,
1692
(
2001
).
11.
J.
Martinez-Anton
,
J. Opt. A
8
,
S213
(
2006
).
12.
J.
Chua
,
V.
Murukeshan
,
S.
Tan
, and
Q.
Lin
,
Opt. Express
15
,
3437
(
2007
).
13.
K.
Sreekanth
,
V.
Murukeshan
, and
J.
Chua
,
Appl. Phys. Lett.
93
,
093103
(
2008
).
14.
K.
Sreekanth
and
V.
Murukeshan
,
J. Vac. Sci. Technol. B
28
,
128
(
2010
).
15.
E.
Bezus
,
D.
Bykov
,
L.
Doskolovich
, and
I.
Kadomin
,
J. Opt. A
10
,
095204
(
2008
).
16.
E.
Bezus
,
L.
Doskolovich
, and
N.
Kazanskiy
,
Microelectron. Eng.
88
,
170
(
2011
).
18.
A.
Grbic
,
L.
Jiang
, and
R.
Merlin
,
Science
320
,
511
(
2008
).
19.
A.
Grbic
and
R.
Merlin
,
IEEE Trans. Antennas Propag.
56
,
3159
(
2008
).
20.
E. F.
Kuester
,
M. A.
Mohamed
,
M.
Piket-May
, and
C. L.
Holloway
,
IEEE Trans. Antennas Propag.
51
,
2641
(
2003
).
21.
C.
Pfeiffer
and
A.
Grbic
,
Phys. Rev. Appl.
2
,
044011
(
2014
).
22.
A.
Epstein
and
G. V.
Eleftheriades
,
IEEE Trans. Antennas Propag.
64
,
3880
(
2016
).
23.
Y.
Kato
and
A.
Sanada
,
IEEE Trans. Microwave Theory Techn.
68
,
1401
(
2020
).
24.
A.
Copty
,
F.
Sakran
,
M.
Golosovsky
,
D.
Davidov
, and
A.
Frenkel
,
Appl. Phys. Lett.
84
,
5109
(
2004
).
25.
E.
Jerby
,
O.
Aktushev
, and
V.
Dikhtyar
,
J. Appl. Phys.
97
,
034909
(
2005
).
26.
Q.
Yuan
,
Q.
Chen
,
L.
Li
, and
K.
Sawaya
,
IEEE Trans. Antennas Propag.
58
,
1751
(
2010
).
27.
B.
Wang
,
K. H.
Teo
,
T.
Nishino
,
W.
Yerazunis
,
J.
Barnwell
, and
J.
Zhang
,
Appl. Phys. Lett.
98
,
254101
(
2011
).
28.
J.
Bonache
,
G.
Zamora
,
F.
Paredes
,
S.
Zuffanelli
,
P.
Aguilà
, and
F.
Martín
,
Sci. Rep.
6
,
37739
(
2016
).
29.
L.
Markley
,
A. M. H.
Wong
,
Y.
Wang
, and
G. V.
Eleftheriades
,
Phys. Rev. Lett.
101
,
113901
(
2008
).
30.
F. M.
Huang
and
N. I.
Zheludev
,
Nano Lett.
9
,
1249
(
2009
).
31.
A. M. H.
Wong
and
G. V.
Eleftheriades
,
IEEE Trans. Antennas Propag.
59
,
4766
(
2011
).
32.
Y.
Ra'di
,
D. L.
Sounas
, and
A.
Alù
,
Phys. Rev. Lett.
119
,
067404
(
2017
).
33.
D.
Sell
,
J.
Yang
,
S.
Doshay
,
R.
Yang
, and
J. A.
Fan
,
Nano Lett.
17
,
3752
(
2017
).
34.
M.
Memarian
,
X.
Li
,
Y.
Morimoto
, and
T.
Itoh
,
Sci. Rep.
7
,
42286
(
2017
).
35.
A.
Epstein
and
O.
Rabinovich
,
Phys. Rev. Appl.
8
,
054037
(
2017
).
36.
A. M. H.
Wong
and
G. V.
Eleftheriades
,
Phys. Rev. X
8
,
011036
(
2018
).
37.
Z.
Fan
,
M. R.
Shcherbakov
,
M.
Allen
,
J.
Allen
,
B.
Wenner
, and
G.
Shvets
,
ACS Photonics
5
,
4303
(
2018
).
38.
O.
Rabinovich
and
A.
Epstein
,
IEEE Trans. Antennas Propag.
66
,
4086
(
2018
).
39.
V.
Popov
,
F.
Boust
, and
S. N.
Burokur
,
Phys. Rev. Appl.
10
,
011002
(
2018
).
40.
O.
Rabinovich
and
A.
Epstein
,
IEEE Trans. Antennas Propag.
68
,
1553
(
2020
).
41.
S.
Tretyakov
,
Analytical Modeling in Applied Electromagnetics
(
Artech House
,
2003
).
42.
Choosing l=λ/10 has proven sufficiently small to allow homogenization of the loaded strips along the x axis.35,32–40,43 This facilitates the basic 2D study presented herein, focusing on collimation along y and single-polarized fields. To form hot spots localized in both dimensions and dual-polarized response, dipole scatterers should be considered as meta-atoms (instead of loaded strips); this is left for future work.
43.
P. M. T.
Ikonen
,
E.
Saenz
,
R.
Gonzalo
, and
S. A.
Tretyakov
,
IEEE Trans. Antennas Propag.
55
,
2692
(
2007
).
44.
If tighter hot spots or more elaborated near-field interference patterns are required, necessitating utilization of additional higher-order modes. One may use a focal plane situated closer to the MG to counter the rapid SW decay, relaxing the demands on their amplitudes in view of conductor loss.

Supplementary Material

You do not currently have access to this content.