Integrating III–V gain elements in the silicon photonics platform via selective area heteroepitaxy (SAH) would enable large-scale and low-cost photonic integrated circuits. Here, we demonstrate antiphase boundary (APB)-free gallium arsenide (GaAs) microridges selectively grown on flat-bottom (001) silicon (Si) inside a recess. This approach eliminates the need for etching the patterned Si to form trapezoid or v-groove shapes, often leveraged for eliminating APBs. A low surface dislocation density of 8.5 × 106 cm−2 was achieved for 15-μm-wide GaAs microridges, quantified by electron channeling contrast imaging. The avoidance of APBs is primarily due to their self-annihilation, influenced by the sufficiently low temperature GaAs nucleation and subsequent higher temperature buffer overgrowth. Dislocation filtering approaches, namely, thermal cycle annealing and strained-layer superlattices, have been applied to effectively reduce the dislocation density. SAH of GaAs on trapezoidal-shaped Si pockets is also reported to illustrate the differing growth conditions for GaAs on (001) and (111) Si microplanes.

1.
A. W.
Fang
,
H.
Park
,
O.
Cohen
,
R.
Jones
,
M. J.
Paniccia
, and
J. E.
Bowers
,
Opt. Express
14
(
20
),
9203
9210
(
2006
).
2.
G.
Roelkens
,
L.
Liu
,
D.
Liang
,
R.
Jones
,
A.
Fang
,
B.
Koch
, and
J.
Bowers
,
Laser Photonics Rev.
4
(
6
),
751
779
(
2010
).
3.
B.
Song
,
C.
Stagarescu
,
S.
Ristic
,
A.
Behfar
, and
J.
Klamkin
,
Opt. Express
24
(
10
),
10435
10444
(
2016
).
4.
J.
Zhang
,
G.
Muliuk
,
J.
Juvert
,
S.
Kumari
,
J.
Goyvaerts
,
B.
Haq
,
C.
Op de Beeck
,
B.
Kuyken
,
G.
Morthier
,
D.
Van Thourhout
,
R.
Baets
,
G.
Lepage
,
P.
Verheyen
,
J.
Van Campenhout
,
A.
Gocalinska
,
J.
O'Callaghan
,
E.
Pelucchi
,
K.
Thomas
,
B.
Corbett
,
A.
Trindade
, and
G.
Roelkens
,
APL Photonics
4
(
11
),
110803
(
2019
).
5.
Y.
Hu
,
D.
Liang
,
K.
Mukherjee
,
Y.
Li
,
C.
Zhang
,
G.
Kurczveil
,
X.
Huang
, and
R. G.
Beausoleil
,
Light: Sci. Appl.
8
(
93
),
1
9
(
2019
).
6.
Q.
Li
and
K. M.
Lau
,
Prog. Cryst. Growth Charact. Mater.
63
(
4
),
105
120
(
2017
).
7.
R.
Alcotte
,
M.
Martin
,
J.
Moeyaert
,
R.
Cipro
,
S.
David
,
F.
Bassani
,
F.
Ducroquet
,
Y.
Bogumilowicz
,
E.
Sanchez
,
Z.
Ye
,
X. Y.
Bao
,
J. B.
Pin
, and
T.
Baron
,
APL Mater.
4
(
4
),
046101
(
2016
).
8.
S.
Chen
,
W.
Li
,
J.
Wu
,
Q.
Jiang
,
M.
Tang
,
S.
Shutts
,
S. N.
Elliott
,
A.
Sobiesierski
,
A. J.
Seeds
,
I.
Ross
,
P. M.
Smowton
, and
H.
Liu
,
Nat. Photonics
10
(
5
),
307
(
2016
).
9.
D.
Jung
,
J.
Norman
,
M. J.
Kennedy
,
C.
Shang
,
B.
Shin
,
Y.
Wan
,
A. C.
Gossard
, and
J. E.
Bowers
,
Appl. Phys. Lett.
111
(
12
),
122107
(
2017
).
10.
B.
Shi
,
S.
Pinna
,
H.
Zhao
,
S.
Zhu
, and
J.
Klamkin
,
Phys. Status Solidi A
218
,
2000374
2000379
(
2021
).
11.
Y.
Xue
,
W.
Luo
,
S.
Zhu
,
L.
Lin
,
B.
Shi
, and
K. M.
Lau
,
Opt. Express
28
(
12
),
18172
18179
(
2020
).
12.
J. R.
Reboul
,
L.
Cerutti
,
J. B.
Rodriguez
,
P.
Grech
, and
E.
Tournié
,
Appl. Phys. Lett.
99
(
12
),
121113
(
2011
).
13.
A. G.
Taboada
,
M.
Meduňa
,
M.
Salvalaglio
,
F.
Isa
,
T.
Kreiliger
,
C. V.
Falub
,
E.
Barthazy Meier
,
E.
Müller
,
L.
Miglio
,
G.
Isella
, and
H.
von Känel
,
J. Appl. Phys.
119
(
5
),
055301
(
2016
).
14.
B.
Kunert
,
W.
Guo
,
Y.
Mols
,
B.
Tian
,
Z.
Wang
,
Y.
Shi
,
D.
Van Thourhout
,
M.
Pantouvaki
,
J.
Van Campenhout
,
R.
Langer
, and
K.
Barla
,
Appl. Phys. Lett.
109
(
9
),
091101
(
2016
).
15.
L.
Megalini
,
B.
Bonef
,
B. C.
Cabinian
,
H.
Zhao
,
A.
Taylor
,
J. S.
Speck
,
J. E.
Bowers
, and
J.
Klamkin
,
Appl. Phys. Lett.
111
(
3
),
032105
(
2017
).
16.
B.
Shi
,
Y.
Han
,
Q.
Li
, and
K. M.
Lau
,
IEEE J. Sel. Top. Quantum Electron.
25
(
6
),
1
11
(
2019
).
17.
B.
Shi
,
A.
Goswami
,
A. A.
Taylor
,
S. T.
Suran Brunelli
,
C.
Palmstrøm
, and
J.
Klamkin
,
Cryst. Growth Des.
20
(
12
),
7761
7770
(
2020
).
18.
S. F.
Fang
,
K.
Adomi
,
S.
Iyer
,
H.
Morkoc
,
H.
Zabel
,
C.
Choi
, and
N.
Otsuka
,
J. Appl. Phys.
68
(
7
),
R31
R58
(
1990
).
19.
J. S.
Yu
,
J. D.
Song
, and
Y. T.
Lee
,
J. Cryst. Growth
235
(
1-4
),
40
48
(
2002
).
20.
A.
Ballabio
,
S.
Bietti
,
A.
Scaccabarozzi
,
L.
Esposito
,
S.
Vichi
,
A.
Fedorov
,
A.
Vinattieri
,
C.
Mannucci
,
F.
Biccari
,
A.
Nemcsis
,
L.
Toth
,
L.
Miglio
,
M.
Gurioli
,
G.
Isella
, and
S.
Sanguinetti
,
Sci. Rep.
9
(
17529
),
1
8
(
2019
).
21.
Y. B.
Bolkhovityanov
and
O. P.
Pchelyakov
,
Phys.-Usp.
51
(
5
),
437
456
(
2008
).
22.
A.
Georgakilas
,
J.
Stoemenos
,
K.
Tsagaraki
,
P.
Komninou
,
N.
Flevaris
,
P.
Panayotatos
, and
A.
Christou
,
J. Mater. Res.
8
(
8
),
1908
1921
(
1993
).
23.
K.
Volz
,
A.
Beyer
,
W.
Witte
,
J.
Ohlmann
,
I.
Németh
,
B.
Kunert
, and
W.
Stolz
,
J. Cryst. Growth
315
(
1
),
37
47
(
2011
).
24.
M.
Grundmann
,
A.
Krost
, and
D.
Bimberg
,
J. Vac. Sci. Technol. B
9
(
4
),
2158
2166
(
1991
).
25.
B.
Shi
,
L.
Wang
,
A. A.
Taylor
,
S.
Suran Brunelli
,
H.
Zhao
,
B.
Song
, and
J.
Klamkin
,
Appl. Phys. Lett.
114
(
17
),
172102
(
2019
).
26.
B.
Shi
and
J.
Klamkin
,
J. Appl. Phys.
127
(
3
),
033102
(
2020
).
27.
B.
Shi
,
H.
Zhao
,
L.
Wang
,
B.
Song
,
S. T.
Suran Brunelli
, and
J.
Klamkin
,
Optica
6
(
12
),
1507
1514
(
2019
).
28.
Y.
Shi
,
B.
Kunert
,
Y.
De Koninck
,
M.
Pantouvaki
,
J.
Van Campenhout
, and
D.
Van Thourhout
,
Opt. Express
27
(
26
),
37781
37794
(
2019
).

Supplementary Material

You do not currently have access to this content.