5G technology, both infrastructure and handsets, is being deployed throughout the world with television advertisements trumpeting faster download speeds, an end to dropped calls and buffering, high bandwidth communication systems enabling remote surgery, autonomous vehicles, and enhanced virtual reality experiences. In truth, the adoption of the 5G technology is in its infancy with numerous technical challenges ahead. In this perspective article, we will present an overview of the technology platforms that make up 5G and examine the role of ceramic oxide and nitride materials in enabling this technology. We will look at ceramic devices present in both handsets and the base station infrastructure in terms of its historical use in wireless telephony and its projected future use in 5G systems.

1.
Skyworks Solutions White Paper
,
5G in Perspective, A Pragmatic Guide to What's Next
(
Skyworks Solutions
,
2016
).
2.
D. B.
Cruickshank
,
Implementing Full Duplexing for 5G
(
Artech House
,
2020
).
3.
D. B.
Cruickshank
,
Microwave Material Applications: Device Miniaturization and Integration
(
Artech House
,
2017
).
4.
Y. Q.
Fu
,
J. K.
Luo
,
X. Y.
Du
,
A. J.
Flewitt
,
Y.
Li
,
G. H.
Markx
,
A.
Walton
, and
W. I.
Milne
,
Sens. Actuators, B
143
(
2
),
606
(
2010
).
5.
ASTM E
494-495,
Standard Practice for Measuring the Acoustic Velocity of Materials
(
ASTM Standards
,
1995
).
6.
M.
Kadota
, in
Proceedings of IEEE Ultrasonics Symposium
, New York (
2007
), p.
496
.
7.
L.
Huang
and
J.
Kieffer
,
Phys. Rev. B
69
,
224203
(
2004
).
8.
J. T.
Krause
and
C. R.
Kurkjian
,
J. Am. Ceram. Soc.
51
(
4
),
226
(
1968
).
9.
K. R.
Talley
,
S. L.
Millican
,
J.
Mangum
,
S.
Sial
,
C. B.
Musgrave
,
B.
Gorman
,
A. M.
Holder
,
A.
Zakutayev
, and
G. L.
Brennecka
,
Phys. Rev. Mater.
2
,
063802
(
2018
).
10.
M.
Akiyama
,
K.
Toshihiro
,
K.
Kazuhiko
,
T.
Akihiko
,
T.
Yukihiro
, and
K.
Nobuaki
,
Adv. Mater.
21
(
5
),
593
596
(
2009
).
11.
F. Z.
Bi
and
B. P.
Barber
,
IEEE Microwave Mag.
9
(
5
),
65
(
2008
).
12.
A.
Ansari
, IEEE MTT-S, International Wireless Symposium, May 19–22, 2020 Guangzhou, China.
13.
S.
Manna
,
G. L.
Brennecka
,
V.
Stevanovic
, and
C. V.
Ciobanu
,
J. Appl. Phys.
122
,
105101
(
2017
).
14.
E. G.
Larsson
,
IEEE Comms. Mag.
52
(
2
),
186
195
(
2014
).
15.
H.
Mosallaei
and
K.
Sarabandi
,
IEEE Trans. Antennas Propag.
52
(
9
),
2403
(
2004
).
16.
M.
Sebastian
,
H.
Wang
, and
H.
Jantunen
,
Curr. Opin. Solid State Mater. Sci.
20
(
3
),
151
170
(
2016
).
17.
M. D.
Hill
, “
Chapter 6: Trans-Tech: Perspectives on the development process for new microwave dielectric and magnetic ceramics
,”
Materials Research for Manufacturing
(
Springer
,
2015
), pp
167
191
.
18.
P. K.
Davies
,
J.
Tong
, and
T.
Negas
,
J. Am. Ceram. Soc.
80
(
7
),
1727
1740
(
1997
).
19.
I.
Reaney
and
D.
Iddles
,
J. Am. Ceram. Soc.
89
(
7
),
2063
2072
(
2006
).
20.
L.
Chai
and
P.
Davies
,
J. Am. Ceram. Soc.
80
(
12
),
3193
3198
(
1997
).
21.
H.
Ohsato
,
MRS Online Proc. Libr. Arch.
833
,
1
(
2011
).
22.
M.
Sebastian
,
R.
Ubic
, and
H.
Jantunen
,
Microwave Materials and Applications
(
Wiley
,
2017
).
23.
D. B.
Cruickshank
,
Microwave Materials for Wireless Applications
(
Artech House
,
2012
).
24.
H.
Bosma
, “
On stripline Y-circulation at UHF
,”
IEEE Trans. Microwave Theory Tech.
12
(
1
),
61
72
(
1964
).
25.
C. E.
Fay
and
R. L.
Comstock
, “
Operation of the ferrite junction circulator
,”
IEEE Trans. Microwave Theory Tech.
13
(
1
),
15
27
(
1965
).
26.
D. B.
Cruickshank
and
M. D.
Hill
, U.S. patent 8,696,925 (April,
2014
).
27.
D. B.
Cruickshank
,
D. M.
Firor
, and
I. A.
MacFarlane
, US PTO Publication 20180166763 (June,
2018
).
28.
D.
Cruickshank
,
T. M.
Ly
, and
J.
Zheng
, U.S. patent 8282763 (October,
2012
)
29.
J.
Zheng
,
D. B.
Cruickshank
,
D. M.
Firor
, U.S. patent 7,687,014 (March,
2010
).
You do not currently have access to this content.