Liquid metal has exhibited great potential in escalating power density in both triboelectric nanogenerator and thermoacoustic systems. An innovative endeavor of coupling these two systems through liquid metal enables a thermal power generator without solid moving parts and shows prospects in the recovery of waste heat. In this configuration, liquid metal functions as both triboelectric and resonant stuff. Based on the understanding, an experimental setup involving a standing-wave thermoacoustic heat engine and a liquid metal-based triboelectric nanogenerator is fabricated to validate the concept. So far, the highest open-circuit voltage amplitude of 15 V has been achieved, outweighing our previous work by 50%. Allowing for the reduction in size, the preliminary results well demonstrate the viability of future applications.

1.
S.
Backhaus
,
E.
Tward
, and
M.
Petach
,
Appl. Phys. Lett.
85
(
6
),
1085
(
2004
).
2.
T.
Bi
,
Z.
Wu
,
L.
Zhang
,
G.
Yu
,
E.
Luo
, and
W.
Dai
,
Appl. Energy
185
,
1355
(
2017
).
3.
M. A. G.
Timmer
,
K.
de Blok
, and
T. H.
van der Meer
,
J. Acoust. Soc. Am.
143
(
2
),
841
(
2018
).
4.
T.
Jin
,
J.
Huang
,
Y.
Feng
,
R.
Yang
,
K.
Tang
, and
R.
Radebaugh
,
Energy
93
,
828
(
2015
).
5.
S.
Backhaus
and
G. W.
Swift
,
Nature
399
(
6734
),
335
(
1999
).
6.
M. E. H.
Tijani
and
S.
Spoelstra
,
J. Appl. Phys.
110
(
9
),
093519
(
2011
).
7.
G. W.
Swift
,
J. Acoust. Soc. Am.
92
(
3
),
1551
(
1992
).
8.
G.
Yu
,
X.
Wang
,
W.
Dai
, and
E.
Luo
,
Appl. Energy
111
,
1147
(
2013
).
9.
C.
Iniesta
,
J. L.
Olazagoitia
,
J.
Vinolas
, and
J.
Aranceta
,
Proc. Inst. Mech. Eng., Part A
232
(
7
),
940
(
2018
).
10.
T.
Yazaki
,
T.
Biwa
, and
A.
Tominaga
,
Appl. Phys. Lett.
80
(
1
),
157
(
2002
).
11.
W.
Dai
,
G.
Yu
,
S.
Zhu
, and
E.
Luo
,
Appl. Phys. Lett.
90
(
2
),
024104
(
2007
).
12.
L. M.
Zhang
,
J. Y.
Hu
,
Z. H.
Wu
,
E. C.
Luo
,
J. Y.
Xu
, and
T. J.
Bi
,
Appl. Phys. Lett.
107
(
3
),
033905
(
2015
).
13.
G.
Chen
,
L. H.
Tang
,
Z. S.
Yang
,
K.
Tao
, and
Z. B.
Yu
,
Int. J. Energy Res.
44
(
3
),
2298
(
2020
).
14.
K.
de Blok
,
P.
Owczarek
, and
M. X.
François
, “
Bi-directional turbines for converting acoustic wave power into electricity
,” in
9th PAMIR International Conference on Fundamental Applied MHD
, Riga, Latvia (
2014
).
15.
T.
Biwa
,
T.
Watanabe
, and
G.
Penelet
,
Appl. Phys. Lett.
117
(
24
),
243902
(
2020
).
16.
C.
Jensen
and
R.
Raspet
,
J. Acoust. Soc. Am.
128
(
1
),
98
(
2010
).
17.
J.
Smoker
,
M.
Nouh
,
O.
Aldraihem
, and
A.
Baz
,
J. Appl. Phys.
111
(
10
),
104901
(
2012
).
18.
A. A.
Castrejon-Pita
and
G.
Huelsz
,
Appl. Phys. Lett.
90
(
17
),
174110
(
2007
).
19.
F. R.
Fan
,
Z. Q.
Tian
, and
Z. L.
Wang
,
Nano Energy
1
(
2
),
328
(
2012
).
20.
Z. L.
Wang
,
Faraday Discuss.
176
,
447
(
2014
).
21.
Y. N.
Xie
,
S. H.
Wang
,
S. M.
Niu
,
L.
Lin
,
Q. S.
Jing
,
J.
Yang
,
Z. Y.
Wu
, and
Z. L.
Wang
,
Adv. Mater.
26
(
38
),
6599
(
2014
).
22.
S. M.
Zhu
,
A. F.
Yu
,
G. Y.
Yu
,
Y. D.
Liu
,
J. Y.
Zhai
,
W.
Dai
, and
E. C.
Luo
,
Appl. Phys. Lett.
111
(
15
),
153901
(
2017
).
23.
W.
Tang
,
T.
Jiang
,
F. R.
Fan
,
A. F.
Yu
,
C.
Zhang
,
X.
Cao
, and
Z. L.
Wang
,
Adv. Funct. Mater.
25
(
24
),
3718
(
2015
).
24.
X. L.
Zhang
,
Y. B.
Zheng
,
D. A.
Wang
, and
F.
Zhou
,
Nano Energy
40
,
95
(
2017
).
25.
J. P.
Clark
,
W. C.
Ward
, and
G. W.
Swift
,
J. Acoust. Soc. Am.
122
(
5
),
3014
(
2007
).
26.
K.
Tang
,
T.
Lei
,
T.
Jin
,
X. G.
Lin
, and
Z. Z.
Xu
,
Appl. Phys. Lett.
94
(
25
),
254101
(
2009
).
27.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
201
(
1065
),
192
(
1950
).
28.
S.
Langdon-Arms
,
M.
Gschwendtner
, and
M.
Neumaier
,
Proc. Inst. Mech. Eng., Part C
233
(
4
),
1236
(
2019
).
29.
P.
Murti
,
H.
Hyodo
, and
T.
Biwa
,
J. Appl. Phys.
127
(
15
),
154901
(
2020
).
30.
S. M.
Niu
,
Y.
Liu
,
S. H.
Wang
,
L.
Lin
,
Y. S.
Zhou
,
Y. F.
Hu
, and
Z. L.
Wang
,
Adv. Mater.
25
(
43
),
6184
(
2013
).
You do not currently have access to this content.